
X

Y

-pic Reference Manual

Kristo�er H. Rose

hkris@diku.dki

�

Ross Moore

hross@mpce.mq.edu.aui

y

Version 2.12/3�

z

h1994/10/25i

Abstract

This manual summarises the capabilities of the X

Y

-pic

package for typesetting graphs and diagrams in T

E

X.

A characteristic of X

Y

-pic is that it is build around

a kernel drawing language which is a concise notation

for general graphics, e.g.,

A

B

was drawn by the X

Y

-pic kernel code

\xy (3,0)*{A} ; (20,6)*+{B}*\cir{} **\dir{-}

? *_!/3pt/\dir{)} *_!/7pt/\dir{:}

?>* \dir{>} \endxy

It is an object-oriented graphic language in the most

literal sense: `objects' in the picture have `methods'

describing how they typeset, stretch, etc., however, the

syntax is rather terse.

Particular applications make use of extensions that

enhance the graphic capabilities of the kernel to handle

such diagrams as

Round

Square

Bend

which was typeset by

\xy *[o]=<40pt>\hbox{Round}="o"*\frm{oo}

+<5em,-5em>@+,

�

DIKU (Computer Science dept.), University of Copenhagen,

Universitetsparken 1, DK{2100 K�benhavn �, Denmark.

y

MPCE (Mathematics dept.), Macquarie University, North

Ryde, Sydney, Australia NSW 2109.

z

The \/3�" in the version is meant to indicate that this is

a �-test version of X

Y

-pic version 3 currently under development

by the authors, thus this manual contains a few `Bug' and `To

Do' paragraphs describing facilities not yet fully implemented.

Partial funding for this project has been provided by a Mac-

quarie University Research Grant (MURG), by the Australian

ResearchCouncil (ARC), and through a research agreementwith

the Digital Equipment Corporation (DEC).

(46,11)*+\hbox{Square}="s" *\frm{-,}

-<5em,-5em>@+,

"o";"s" **i\crvs{},

?*+\hbox{Bend}="b"*\frm{.} ?>*\dir{>},

"o";"s"."b" **\crvs{-},

"o"."b";"s" **\crvs{-}

\endxy

using the `curve' and `frame' extensions.

All this is made accesible through features that pro-

vide convenient notation such that users can enter spe-

cial classes of diagrams in an intuitive form, e.g., the

diagram

Z

X

f

Y

g

X �

Z

Y

p

q

U

x

y

(x;y)

was typeset using the `graph' features by the X

Y

-pic

input lines

\xygraph{~{(1.5,0):(0,.7)::}

[]Z ([u]X :_f ? , [l]Y :^g ?)

[ul]{X \times_Z Y}="xy"

(? :_p "X" , ? :^q "Y")

[ul]U (? :@/^.5pc/ ^x "X" ,

? :@/_.5pc/ _y "Y" ,

? :@{-->} |{(x,y)} "xy") }

We will not describe the combination of features in

this manual: refer to the User's Guide [14] for a tutorial

on how diagrams like the above can be typeset.

The current implementation is programmed com-

pletely within \standard T

E

X and METAFONT", i.e.,

using T

E

X macros (no \specials) and fonts de-

signed using METAFONT. Optionally a special `back-

end' makes it possible to produce DVI �les with `spe-

cials' for PostScript

1

drivers.

1

PostScript is a trademark of Adobe, Inc.

1

Contents

I The Kernel 2

1 The X

Y

-pic implementation 3

1.1 Loading X

Y

-pic : : : : : : : : : : : : : : 3

1.2 Logo, version, and messages : : : : : : : 4

1.3 Fonts : 4

1.4 Allocations : : : : : : : : : : : : : : : : 4

2 Picture basics 4

2.1 Positions : : : : : : : : : : : : : : : : : : 4

2.2 Objects : : : : : : : : : : : : : : : : : : 5

2.3 Connections : : : : : : : : : : : : : : : : 5

2.4 Decorations : : : : : : : : : : : : : : : : 5

2.5 The X

Y

-pic state : : : : : : : : : : : : : : 5

3 Positions 5

4 Objects 9

5 Decorations 12

6 Kernel object library 13

6.1 Directionals : : : : : : : : : : : : : : : : 13

6.2 Circle segments : : : : : : : : : : : : : : 15

6.3 Text : 15

7 X

Y

-pic option interface 15

II Extensions 16

8 Curve and Spline extension 16

9 Frame and Bracket extension 19

9.1 Frames : : : : : : : : : : : : : : : : : : : 19

9.2 Brackets : : : : : : : : : : : : : : : : : : 19

10 Computer Modern tip extension 21

11 Line styles extension 21

12 Rotate and Scale extension 22

13 Colour extension 23

III Features 23

14 All features 24

15 Dummy option 24

16 Arrow and Path feature 24

16.1 Paths : : : : : : : : : : : : : : : : : : : 24

16.2 Arrows : : : : : : : : : : : : : : : : : : : 28

17 Two-cell feature 30

17.1 Typesetting 2-cells in Diagrams : : : : : 30

17.2 Standard Options : : : : : : : : : : : : : 30

17.3 Nudging : : : : : : : : : : : : : : : : : : 31

17.4 Extra Options : : : : : : : : : : : : : : : 31

17.5 2-cells in general X

Y

-pictures : : : : : : : 34

18 Matrix feature 34

18.1 X

Y

-matrices : : : : : : : : : : : : : : : : 34

18.2 New coordinate formats : : : : : : : : : 35

18.3 Spacing and rotation : : : : : : : : : : : 35

18.4 Entries : : : : : : : : : : : : : : : : : : : 36

19 Graph Combinator feature 36

20 Polygon feature 38

21 Version 2 Compatibility feature 41

21.1 Unsupported incompatibilities : : : : : : 41

21.2 Obsolete kernel features : : : : : : : : : 41

21.3 Obsolete extensions & features : : : : : 42

21.4 Obsolete loading : : : : : : : : : : : : : 43

21.5 Compiling v2-diagrams : : : : : : : : : : 43

IV Backends 43

22 PostScript backend 43

22.1 Choosing the DVI-driver : : : : : : : : : 44

22.2 Why use PostScript. : : : : : : : : : : 45

22.3 PostScript escape : : : : : : : : : : : 46

22.4 Extensions : : : : : : : : : : : : : : : : : 46

Answers to all exercises 46

References 50

List of Figures

1 hposiitions. : : : : : : : : : : : : : : : : 6

2 Example hplaceis : : : : : : : : : : : : : 9

3 hobjectis. : : : : : : : : : : : : : : : : : 11

4 hdecoriations. : : : : : : : : : : : : : : : 13

5 Kernel library hdiriectionals : : : : : : : 14

6 hciricles. : : : : : : : : : : : : : : : : : : 16

7 Syntax for curves. : : : : : : : : : : : : 18

8 Plain hframeis. : : : : : : : : : : : : : : 20

9 Bracket hframeis. : : : : : : : : : : : : : 20

10 Computer Modern hdiriectionals : : : : 22

11 Rotations, scalings and
ips : : : : : : : 24

12 hpathis : : : : : : : : : : : : : : : : : : : 25

13 harrowis. : : : : : : : : : : : : : : : : : : 28

14 Pasting diagram. : : : : : : : : : : : : : 31

15 htwocellis : : : : : : : : : : : : : : : : : 32

16 hgraphis : : : : : : : : : : : : : : : : : : 37

2

Part I

The Kernel

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

After giving an overview of the X

Y

-pic environment

in x1 we document the basic concepts of X

Y

-picture

construction in x2, including the maintained `graphic

state'. The following sections give the precise syntax

rules of the main X

Y

-pic constructions: the position

language in x3, the object constructions in x4, and the

picture `decorations' in x5. x6 presents the kernel reper-

toire of objects for use in pictures; x7 documents the

interface to X

Y

-pic options like the standard `feature'

and `extension' options.

Details of the implementation are not discussed in

this part but in the complete T

E

Xnical documenta-

tion [11].

Notation

We will give descriptions of the syntax of pictures as

BNF

2

rules; in explanations we will use upper case let-

ters like X and Y for hdimenisions and lower case like

x and y for hfactoris.

1 The X

Y

-pic implementation

This section brie
y discusses the various aspects of the

present X

Y

-pic kernel implementation of which the user

should be aware in order to experiment with it.

1.1 Loading X

Y

-pic

X

Y

-pic is careful to set up its own environment in order

to function with a large variety of formats. For most

formats a single line with the command

\input xy

in the preamble of a document �le should load the ker-

nel (see `integration with standard formats' below for

variations possible with certain formats, in particular

L

A

T

E

X [8]).

The rest of this section describes things you must

consider if you need to use X

Y

-pic together with other

2

BNF is the notation for \meta-linguistic formulae" �rst used

in [9] to describe the syntax of the Algol programming language.

We use it with the conventions of the T

E

Xbook [5]: `�!' is read

\is de�ned to be", ` j ' is read \or", and `hemptyi' denotes \noth-

ing"; furthermore, `hidi' denotes anything that expands into a

sequence of T

E

X character tokens, `hdimeni' and `hfactori' de-

note decimal numbers with, respectivewithout, a dimension unit

(like pt and mm), hnumberi denotes possibly signed integers, and

htexti denotes T

E

X text to be typeset in the appropriate mode.

We have chosen to annotate the syntax with brief explanations

of the `action' associated with each rule; here ` ' should be read

`is copied from'.

macro packages, style options, or formats. The less

your environment deviates from plain T

E

X the easier

it should be. Consult the T

E

Xnical documentation [11]

for the exact requirements for other de�nitions to co-

exist with X

Y

-pic.

Privacy: X

Y

-pic will warn about control sequences it

rede�nes|thus you can be sure that there are no con-

icts between X

Y

-pic-de�ned control sequences, those

of your format, and other macros, provided you load

X

Y

-pic last and get no warning messages like

XY-pic Warning: ` : : :' redefined.

In general the X

Y

-pic kernel will check all control se-

quences it rede�nes except that (1) generic temporaries

like \next are not checked, (2) prede�ned font iden-

ti�ers (see x1.3) are assumed intentionally preloaded,

and (3) some of the more exotic control sequence names

used internally (like \dir{-}) are only checked to be

di�erent from \relax.

Category codes: Unfortunately the situation is

complicated by the
exibility of T

E

X's input format.

The culprit is the `category code' concept of T

E

X

(cf. [5, p.37]): when loaded X

Y

-pic requires the charac-

ters \{}% (the �rst is a space) to have their standard

meaning and all other printable characters to have the

same category as when X

Y

-pic will be used|in particu-

lar this means that (1) you should surround the load-

ing of X

Y

-pic with \makeatother : : : \makeatletter

when loading it from within a L

A

T

E

X package, and that

(2)X

Y

-pic should be loaded after �les that change cate-

gory codes (like the german.sty that makes " active).

Integration with standard formats The inte-

gration with various formats is handled by the

xyidioms.tex �le and the integration as a L

A

T

E

X [8]

package by xy.sty:

xyidioms.doc: This included �le provides com-

mon idioms whose de�nition depends on the used for-

mat such thatX

Y

-pic can use prede�ned dimension reg-

isters etc. and yet still be independent of the format

under which it is used. The current version (2.12) han-

dles plain T

E

X (version 2 and 3 [5]), A

M

S-T

E

X (version

2.0 and 2.1 [15]), L

A

T

E

X (version 2.09 [7] and 2" [8]),

A

M

S-L

A

T

E

X (version 1.0, 1.1 [1], and 1.2), and eplain

(version 2.6 [2])

3

.

xy.sty: If you use L

A

T

E

X then this �le makes it pos-

sible to loadX

Y

-pic as a `package' using the L

A

T

E

X2

"

[8]

3

Although there is a name con
ict between the `v2' feature

and eplain that both de�ne \arrow.

3

\usepackage command:

\usepackage [hoptioni,: : :] {xy}

where the hoptionis will be interpreted as if passed to

\xyoption (cf. x7); furthermore options that require

special activation will also be activated when loaded

this way (e.g., including cmtip in the hoptioni list will

not only perform \xyoption {cmtip} but also \Use-

ComputerModernTips).

Driver package options (cf. [3, table 11.2, p.317]) will

invoke the appropriate backend (cf. x22).

The �le also works as a L

A

T

E

X 2.09 [7] `style option'

although you will have to load options with the X

Y

-pic

mechanism.

1.2 Logo, version, and messages

Loading X

Y

-pic prints a banner containing the version

and author of the kernel; small progress messages are

printed when each major division of the kernel has been

loaded. Any options loaded will announce themself in

a similar fashion.

If you refer to X

Y

-pic in your written text (please

do
�̂) then you can use the command\Xy-pic to type-

set the \X

Y

-pic" logo. The version of the kernel is type-

set by \xyversion and the release date by \xydate (as

found in the banner). By the way, the X

Y

-pic name

4

originates from the fact that the �rst version was little

more than support for (x; y) coordinates in a con�g-

urable coordinate system where the main idea was that

all operations could be speci�ed in a manner indepen-

dent of the orientation of the coordinates. This prop-

erty has been maintained except that now the package

allows explicit absolute orientation as well.

Messages that start with \XY-pic Warning" are

indications that something needs your attention; an

\XY-pic Error" will stop T

E

X because X

Y

-pic does not

know how to proceed.

1.3 Fonts

The X

Y

-pic kernel implementation makes its drawings

using �ve specially designed fonts:

Font Characters Default

\xydashfont dashes xydash10

\xyatipfont arrow tips, upper half xyatip10

\xybtipfont arrow tips, lower half xybtip10

\xybsqlfont quarter circles for xybsql10

hooks and squiggles

\xycircfont 1=8 circle segments xycirc10

The �rst four contain variations of characters in a large

number of directions, the last contains 1/8 circle seg-

ments.

4

No description of a T

E

X program is complete without an

explanation of its name.

Note: The default fonts are not part of the X

Y

-pic

kernel speci�cation: they just set a standard for what

drawing capabilities should at least be required by

an X

Y

-pic implementation. Implementations exploit-

ing capabilitites of particular output devices are in

use. Hence the fonts are only loaded by X

Y

-pic if the

control sequence names are unde�ned|this is used to

preload them at di�erent sizes or prevent them from

being loaded at all.

1.4 Allocations

One �nal thing that you must be aware of is the fact

that X

Y

-pic allocates a signi�cant number of dimension

registers and some counters, token registers, and box

registers, in order to represent the state and do com-

putations. The X

Y

-pic v.2.12 kernel allocates 6 coun-

ters, 27 dimensions, 2 box registers, 3 token registers,

1 read channel, and 1 write channel (when running

under plain T

E

X; under L

A

T

E

X and A

M

S-T

E

X slightly

less is allocated because the provided temporaries are

used). Options may allocate further registers.

2 Picture basics

The basic concepts involved when constructing X

Y

-

pictures are positions and objects, and how they con-

stitute a state used by the graphic engine.

The general structure of an X

Y

-picture is as follows:

\xy hposi hdecori \endxy

builds a box with an X

Y

-picture (L

A

T

E

X users may sub-

stitute \begin{xy} : : : \end{xy} if they prefer). hposi

and hdecori are components of the special `graphic lan-

guage' which X

Y

-pictures are speci�ed in. We explain

the language components in general terms in this x and

in more depth in the following xx.

2.1 Positions

All positions may be written <X,Y > where X is the

T

E

X dimension distance right and Y the distance up

from the zero position 0 of the X

Y

-picture (0 has co-

ordinates <0mm,0mm>, of course). The zero position

of the X

Y

-picture determines the box produced by the

\xy: : :\endxy command together with the four param-

eters X

min

, X

max

, Y

min

, and Y

max

set such that all the

objects in the picture are `contained' in the following

rectangle:

�

0

T

E

X reference point

�

X

min

X

max

Y

min

Y

max

4

where the distances follow the \up and right > 0" prin-

ciple, e.g., the indicated T

E

X reference point has coor-

dinates <X

min

,0pt> within the X

Y

-picture. The zero

position does not have to be contained in the picture,

but X

min

� X

max

^ Y

min

� Y

max

always holds. The

possible positions are described in detail in x3.

2.2 Objects

The simplest form of putting things into the picture

is to `drop' an object at a position. An object is like

a T

E

X box except that it has a general Edge around

its reference point|in particular this has the extents

(i.e., it is always contained within) the dimensions L,

R, U , and D away from the reference point in each of

the four directions left, right, up, and down. Objects

are encoded in T

E

X boxes using the convention that

the T

E

X reference point of an object is at its left edge,

thus shifted <�L,0pt> from the center|so a T

E

X box

may be said to be a rectangular object with L = 0pt.

Here is an example:

�

L R

D

U

T

E

X reference point

�

The object shown has a rectangle edge but others are

available even though the kernel only supports rectan-

gle and circle edges. It is also possible to use entire

X

Y

-pictures as objects with a rectangle edge, 0 as the

reference point, L = �X

min

, R = X

max

, D = �Y

min

,

and U = Y

max

. The commands for objects are de-

scribed in x4.

2.3 Connections

Besides having the ability to be dropped at a position

in a picture, all objects may be used to connect the

two current objects of the state, i.e., p and c. For most

objects this is done by `�lling' the straight line between

the centers with as many copies as will �t between the

objects:

p

c

�L R

D

U

�
L R

D

U

�L R

D

U

�L R

D

U

�
L R

D

U

�L R

D

U

�L R

D

U

�
L R

D

U

�L R

D

U

�
L R

D

U

The ways the various objects connect are described

along with the objects.

2.4 Decorations

When the \xy command reaches something that can

not be interpreted as a continuation of the position be-

ing read, then it is expected to be a decoration, i.e., in a

restricted set of T

E

X commands which add to pictures.

Most such commands are provided by the various user

options (cf. x7)|only a few are provided within the

kernel to facilitate programming of such options (and

user macros) as described in x5.

2.5 The X

Y

-pic state

Finally we summarise the user-accessible parts of the

X

Y

-picture state of two positions together with the last

object associated with each: the previous, p, is the

position <X

p

, Y

p

> with the object L

p

, R

p

, D

p

, U

p

,

Edge

p

, and the current , c, is the position <X

c

, Y

c

>

with the object L

c

, R

c

, D

c

, U

c

, Edge

c

.

Furthermore, X

Y

-pic has a con�gurable cartesian

coordinate system described by an origin position

<X

origin

, Y

origin

> and two base vectors <X

xbase

,

Y

xbase

> and <X

ybase

, Y

ybase

>, and accessed by the usual

notation using parenthesis:

(x,y) = < X

origin

+ x�X

xbase

+ y �X

ybase

,

Y

origin

+ x� Y

xbase

+ y � Y

ybase

>

This is explained in full when we show how to set the

base in note 3d of x3.

Finally typesetting a connection will setup a \place-

ment state" for referring to positions on the connection

that is accessed through a special ? position construc-

tion; this is also discussed in detail in x3.

The X

Y

-pic state consists of all these parameters to-

gether. They are initialised to zero except for X

xbase

=

Y

ybase

= 1mm. The dimension parameters are directly

available as T

E

X \dimen registers with the obvious

names: \Xmin, \Xmax, \Ymin, and \Ymax; \Xp, \Yp \Dp,

\Up, \Lp, and \Rp; \Xc, \Yc \Dc, \Uc, \Lc, and \Rc;

\Xorigin, \Yorigin, \Xxbase, \Yxbase, \Xybase, and

\Yybase.

The edges are not directly available (but see the tech-

nical documentation for how to access them).

3 Positions

A hposiition is a way of specifying locations as well

as dropping objects at them and decorating them|in

fact any aspect of the X

Y

-pic state can be changed by a

hposi but most will just change the coordinates and/or

shape of c.

All possible positions are shown in �gure 1 with ex-

planatory notes below.

Exercise 1: Which of the positions 0, <0pt,0pt>,

<0pt>, (0,0), and /0pt/ is di�erent from the others?

Notes

3a. When doing arithmetic with + and - then the re-

sulting object inherits the size of the hcoordi, i.e.,

5

Syntax Action

hposi �! hcoordi c hcoordi

j hposi + hcoordi c hposi + hcoordi

3a

j hposi - hcoordi c hposi � hcoordi

3a

j hposi ! hcoordi c hposi then skew

3b

c by hcoordi

j hposi . hcoordi c hposi but also covering

3c

hcoordi

j hposi , hcoordi c hposi then c hcoordi

j hposi ; hcoordi c hposi, swap p and c, c hcoordi

j hposi : hcoordi c hposi, set base

3d

, c hcoordi

j hposi :: hcoordi c hposi, ybase c� origin, c hcoordi

j hposi * hobjecti c hposi, drop

3f

hobjecti

j hposi ** hobjecti c hposi, connect

3g

using hobjecti

j hposi ? hplacei c hposi, c hplacei

3h

j hposi hstackingi c hposi, do hstackingi

j hposi hsavingi c hposi, do hsavingi

hcoordi �! hvectori hposi is hvectori with zero size

j hemptyi j c reuse last c (do nothing)

j p p

j x j y axis intersection

3i

with pc

j shdigiti j s{hnumberi} stack

3m

position hdigiti or hnumberi below the top

j "hidi" restore what was saved

3o

as hidi earlier

j { hposi hdecori } the c resulting from interpreting the group

3j

hvectori �! 0 zero

j < hdimeni , hdimeni > absolute

j < hdimeni > absolute with equal dimensions

j (hfactori , hfactori) in current base

3d

j a (hnumberi) angle in current base

3e

j hcorneri from reference point to hcorneri of c

j hcorneri (hfactori) The hcorneri multiplied with hfactori

j / hdirectioni hdimeni / vector hdimeni in hdirectioni

3k

hcorneri �! L j R j D j U o�set

3l

to left, right, down, up side

j CL j CR j CD j CU j C o�set

3l

to center of side, true center

j LD j RD j LU j RU o�set

3l

to actual left/down, : : : corner

j E j P o�set

3l

to nearest/proportional edge point to p

hplacei �! < hplacei shave

3h

(0) to edge of p, f 0

j > hplacei shave

3h

(1) to edge of c, f 1

j (hfactori) hplacei f hfactori

j hslidei pick place

3h

and apply hslidei

hslidei �! / hdimeni / slide

3h

hdimeni further along connection

j hemptyi no slide

hstackingi �! @i j @(j @) init, enter, leave stack

3m

j @+ hcoordi j @- hcoordi push hcoordi; c hcoordi and pop (on stack

3m

)

j @@ hcoordi do hcoordi for every stack element

3n

hsavingi �! = "hidi" save

3o

c as "hidi"

j =hcodei "hidi" de�ne macro

3p

"hidi"

Figure 1: hposiitions.

6

the right argument|this will be zero if the hcoordi

is a hvectori.

Exercise 2: How do you set c to an object the

same size as the saved object "ob" but moved

<X,Y >?

3b. Skewing using ! just means that the reference

point of c is moved with as little change to the

shape of the object as possible, i.e., the edge of c

will remain in the same location except that it will

grow larger to avoid moving the reference point

outside c.

Exercise 3: What does the hposi : : :!R-L do?

Bug: The result of ! is always a rectangle cur-

rently.

3c. A hposi covers another if it is a rectangle with size

su�ciently large that the other is \underneath".

The . operation \extends" a hposi to cover an ad-

ditional one|the reference point of c is not moved

but the shape is changed to a rectangle such that

the entire p object is covered.

Note: non-rectangular objects are �rst \trans-

lated" into a rectangle by using a diagonal through

the object as the diagonal of the rectangle.

3d. The operations : and :: set the base used for

hcoordiinates on the form (x,y). The : operation

will set <X

origin

, Y

origin

> to p, <X

xbase

, Y

xbase

>

to c � origin, and <X

ybase

, Y

ybase

> to <�Y

xbase

,

X

xbase

> (this ensures that it is a usual square co-

ordinate system). The :: operation may then be

used afterwards to make nonsqare bases by just

setting ybase to c� origin. Here are two examples

0;<1cm,0cm>: will set the coordinate system

�

origin

xbase

ybase

�
(1,1)

and <1cm,.5cm>; <2cm,1.5cm>: <1cm,1cm>::

will de�ne

�

ybase

before

::

origin

xbase

ybase

�
(1,1)

where in each case the � is at 0, the base vectors

have been drawn, and the � is at (1,1).

When working with vectors these two special

hfactoris are particularly useful:

\halfroottwo 0:70710678�

p

2=2

\halfrootthree 0:86602540�

p

3=2

3e. An angle � in X

Y

-pic is the same as the coordi-

nate pair (cos�, sin�) where � must be an inte-

ger interpreted as a number of degrees. Thus the

hvectori a(0) is the same as (1,0) and a(90) as

(0,1), etc.

3f. To drop an hobjecti at c with * means to actu-

ally physically typeset it in the picture with ref-

erence position at c|how this is done depends on

the hobjecti in question and is described in detail

in x4. The intuition with a drop is to do some-

thing that typesets something a <X

c

,Y

c

> and sets

the edge of c accordingly.

3g. The connect operation **will �rst compute a num-

ber of internal parameters describing the direction

from p to c and then typesets a connection �lled

with copies of the hobjecti as illustrated in x2.3.

The exact details of the connection depend on the

actual hobjecti and are described in general in x4.

The intuition with a connection is that it is some-

thing that typesets something connecting p and c

sets the ? hposi operator up accordingly.

3h. Using ? will \pick a place" along the most recent

connection typeset with **. What exactly this

means is determined by the object that was used

for the connection and by the modi�ers described

in general terms here.

The \shave" modi�ers in a hplacei, < and >, change

the default hfactori, f , and how it is used, by

`moving' the positions that correspond to (0) and

(1) (respectively): These are initially set equal

to p and c, but shaving will move them to the

point on the edge of p and c where the connection

\leaves/enters" them, and change the default f as

indicated. When one end has already been shaved

thus then subsequent shaves will correspond to

sliding the appropriate position(s) a T

E

X \jot

(usually equal to 3pt) further towards the other

end of the connection (and past it). Finally the

pick action will pick the position located the frac-

tion f of the way from (0) to (1) where f = 0.5

if it was not set (by <, >, or explicitly).

Finally, the hslidei will move the position a dimen-

sion further along the connection at the picked po-

sition. For straight connections (the only ones ker-

nel X

Y

-pic provides) this is the same as adding a

vector in the tangent direction, i.e., ? : : :/A/ is

the same as ? : : :+/A/.

7

All this is probably best illustrated with some ex-

amples: each
 in �gure 2 is typeset by a sequence

of the form p; c **\dir{.} ?hplacei *{\oplus}

where we indicate the ?hplacei in each case.

3i. The positions denoted by the axis intersection

hcoordiinates x and y are the points where the line

through p and c intersects with each axis. These

are probably best illustrated by the following ex-

ample where they are shown for a coordinate sys-

tem and a p; c pair:

origin

xbase

ybase

�

p

�

c

x

�

y

�

Exercise 4: Given prede�ned points A, B, C,

and D (stored as objects "A", "B", "C", and "D"),

write a hcoordi speci�cation that will return the

point where the lines AB and CD cross as the

point marked with a large circle here:

A

B

C

D

3j. A hposi hdecori grouped in {}-braces is interpreted

in a local scope in the sense that any p and base

built within it are forgotten afterwards. Remark:

Only p and base are restored|it is not a T

E

X

group.

Exercise 5: What is the e�ect of the

hcoordiinate \{;}"?

3k. The vector /Z/, where Z is a hdimenision, is the

same as the vector <Z cos�,Z sin�> where � is

the angle of the last direction set by a connection

(**) or subsequent placement (?) position.

It is possible to give a hdirectioni as described in

the next section (�gure 3 and note 4k in particular)

that will then be used to set the value of �.

3l. A hcorneri is an o�set from the current <X

c

,Y

c

>

position to a speci�c position on the edge of the

c object (the two-letter ones may be given in any

combination):

c

L R

D

U

LD

RD

LU

RU

CL

CR

DC

UC

C

P

p

E

The `proportional' point P is computed in a com-

plex way to make the object look as much `away

from p' as possible.

Finally, a following (f) su�x will multiply the o�-

set vector by the hfactori f .

Exercise 6: What is the di�erence between the

hposiitions c?< and c+E?

Exercise 7: What does

\xy *=<3cm,1cm>\txt{Box}*\frm{-}

!U!R(.5) *\frm{..}*{\bullet} \endxy

typeset? Hint : \frm is de�ned by the frame exten-

sion and just typesets a frame of the kind indicated

by the argument.

Bug: Currently only the single-letter corners (L,

R, D, U, C, E, and P) will work for any shape|the

others silently assume that the shape is rectangu-

lar.

3m. The stack is a special construction useful for stor-

ing a sequence of hposiitions. @i initialises, i.e.,

clears the stack such that it contains no positions,

@+ `pushes' c onto it, i.e., adds on the `top' of the

stack, increasing the `depth' by one, and @- `pops'

the top element o� the stack, decreasing the depth

by one. It is an error to pop when the stack is

empty.

The special hcoordiinates sn, where n is either a

single digit or a positive integer in {}s, refer to the

n'th position below the top, i.e., s0 is the position

on the top, s1 the one below that, etc.

Exercise 8: Assume the positions A, B, C, and

D are de�ned. What does the stack contain after

the hposiition @i, A@+, B@+, @-, C, D@+ ?

Furthermore, @(`hides' the current stack and cre-

ates a fresh stack that can be used as above and

once it has served its purpose @) will purge it and

reestablish the saved stack (issuing a warning mes-

sage if the purged stack is non-empty).

8

p is circular:

c is a

square

text!

�

?(0)

�

?(1)

�

?

�

?(.7)

�

?<>(.5)

�

?<>(.2)(.5)

�

?<

�

?<<<

�

?<<</1cm/

�

?<(0)

�

?>

�

?>>>>

�

?<>(.7)

�

?>(.7)

Figure 2: Example hplaceis

3n. To `do hcoordi for every stack element' means to

set c to all the elements of the stack, from the bot-

tom and up, and for each interpret the hcoordi.

Thus the �rst interpretation has c set to the bot-

tom element of the stack and the last has c set

to s0. If the stack is empty, the hcoordi is not

interpreted at all.

This can be used to repeat a particular hcoordi for

several points:

\xy

@i @+(0,-10) @+(10,3) @+(20,-5)

@@{*{P}}

\endxy

will typeset

P

P

P

Exercise 9: How would you change the above to

connect the points as shown below?

3o. It is possible to de�ne new hcoordiinates on the

form "hidi" by saving the current c using the

: : :="hidi" hposiition form. Subsequent uses of

"hidi" will then reestablish the c at the time of

the saving.

Using a "hidi" that was never de�ned is an error,

however, saving into a name that was previously

de�ned just replaces the de�nition, i.e., "hidi" al-

ways refers to the last thing saved with that hidi.

Note: There is no distinction between hidis used

for saved coordinates and for macros and described

in the next note.

3p. The general form, =hcodei"hidi" can be used to

save various things:

hcodei e�ect

: "hidi" restores current base

hcoordi "hidi" interprets hcoordi

The �rst form de�nes "hidi" to be a macro that

restores the current base.

The second does not depend on the state at the

time of de�nition at all; it is a macro de�nition.

You can pass parameters to such a macro by letting

it use coordinates named "1", "2", etc., and then

use ="1", ="2", etc., just before every use of it

to set the actual values of these. Note: it is not

possible to use a hcoordi of the form "hidi" directly:

write it as {"hidi"}.

Exercise 10: Write a macro "dbl" to double the

size of the current c object, e.g., changing it from

the dotted to the dashed outline in this �gure:

+

4 Objects

Objects are the entities that are manipulated with the

* and ** hposi operations above to actually get some

output inX

Y

-pictures. As for hposiitions the operations

9

are interpreted strictly from left to right, however, the

actual object is built before all the hmodi�eris take

e�ect. The syntax of objects is given in �gure 3 with

references to the notes below.

To Do: Explain how strange T

E

X error messages

(�rst of all box expected) can result from incomplete

hobjecti speci�cations.

Notes

4a. A default hobjecti is built using \objectbox

{htexti}. \objectbox is initially de�ned as

\def\objectbox#1{%

\hbox{$\objectstyle{#1}$}}

\let\objectstyle=\displaystyle

but may be rede�ned by options or the user.

The htexti should thus be in the mode required

by the \objectbox command|with the default

\objectbox it should be in math mode.

4b. An hobjecti built from a T

E

X box with dimen-

sions w � (h + d) will have L

c

= R

c

= w=2,

H

c

= D

c

= (h + d)=2, thus initially be equipped

with the adjustment !C (see note 4f). In particular:

in order to get the reference point on the (center

of) the base line of the original hT

E

X boxi then

you should use the hmodi�eri !; to get the refer-

ence point identical to the T

E

X reference point use

the modi�er !!L.

T

E

Xnical remark: Any macro that expands to

something that starts with a hboxi may be used

as a hT

E

X boxi here.

4c. Takes an object and constructs it, building a box;

it is then processed according to the preceeding

modi�ers. This form makes it possible to use any

hobjecti as a T

E

X box (even outside ofX

Y

-pictures)

because a �nished object is always also a box.

4d. Several hobjectis can be combined into a single ob-

ject using the special command \composite with a

list of the desired objects separated with *s as the

argument. The resulting box (and object) is the

least rectangle enclosing all the included objects.

4e. Take an entire X

Y

-picture and wrap it up as a box

as described in x2.1. Makes nesting of X

Y

-pictures

possible: the inner picture will have its own zero

point which will be its reference point in the outer

picture when it is placed there.

4f. An object is shifted a hvectori by moving the point

inside it which will be used as the reference point.

This e�ectively pushes the object the same amount

in the opposite direction.

Exercise 11: What is the di�erence between the

hposiitions 0*{a}!DR and 0*!DR{a}?

4g. A hsizei is a pair <W,H> of the width and height

of a rectangle. When given as a hvectori these are

just the vector coordinates, i.e., the hvectori starts

in the lower left corner and ends in the upper right

corner. The posible hadd opierations that can be

performed are described in the following table.

hadd opi description

+ grow

- shrink

= set to

+= grow to at least

-= shrink to at most

In each case the hvectori may be omitted which

invokes the \default size" for the particular hadd

opi:

hadd opi default

+ +<2� objectmargin>

- -<2� objectmargin>

= =<objectwidth,objectheight>

+= +=<max(L

c

+R

c

; D

c

+ U

c

)>

-= -=<min(L

c

+R

c

; D

c

+ U

c

)>

The defaults for the �rst three are set with the

commands

\objectmargin hadd opi {hdimeni}

\objectwidth hadd opi {hdimeni}

\objectheight hadd opi {hdimeni}

where hadd opi is interpreted in the same way as

above.

The defaults for +=/-= are such that the result-

ing object will be the smallest containing/largest

contained square.

Exercise 12: How are the objects typeset by the

hposiitions *+UR{\sum}" and *+DL{\sum}" en-

larged?

Bug: Currently changing the size of a circular ob-

ject is buggy|it is changed as if it is a rectangle

and then the change to the R parameter a�ects the

circle. This should be �xed probably by a general-

isation of the o shape to be ovals or ellipses with

horizontal/vertical axes.

4h. An invisible object will be treated completely nor-

mal except that it won't be typeset, i.e.,X

Y

-pic will

behave as if it was.

4i. A hidden object will be typeset but hidden from

X

Y

-pic in that it won't a�ect the size of the entire

picture as discussed in x2.1.

10

Syntax Action

hobjecti �! hmodi�eri hobjecti apply hmodi�eri to hobjecti

j hobjectboxi build hobjectboxi then apply its hmodi�eris

hobjectboxi �! { htexti } build default

4a

object

j hlibrary objecti use hlibrary objecti (see x6)

j hT

E

X boxi { htexti } build box

4b

object with htexti using the given hT

E

X boxi

command, e.g., \hbox

j \object hobjecti wrap up the hobjecti as a �nished object box

4c

j \composite { hcompositei } build composite object box

4d

j \xybox { hposi hdecori } package entire X

Y

-picture as object

4e

with the right size

hmodi�eri �! ! hvectori hobjecti has its is reference point shifted

4f

by hvectori

j ! hobjecti has the original reference point reinstated

j hadd opi hsizei change hobjecti size

4g

j i j h hobjecti is invisible

4h

, hidden

4i

j [hshapei] hobjecti is given the speci�ed hshapei

4j

j hdirectioni set current direction for this hobjecti

hadd opi �! + j - j = j += j -= grow, shrink, set, grow to, shrink to

hsizei �! hemptyi default size

4g

j hvectori size as sides of rectangle surrounding the hvectori

hdirectioni �! hdiagi hdiagional direction

4k

j v hvectori direction

4k

of hvectori

j hdirectioni : hvectori vector relative to hdirectioni

4k

j hdirectioni _ j hdirectioni ^ 90

�

clockwise/anticlockwise of hdirectioni

4k

hdiagi �! hemptyi default diagonal

4k

j l j r j d j u left, right, down, up diagonal

4k

j ld j rd j lu j ru left/down, : : : diagonal

4k

hcompositei �! hobjecti �rst object is required

j hcompositei * hobjecti add hobjecti to composite object box

4d

Figure 3: hobjectis.

11

4j. Setting the shape of an object forces the shape of

its edge to be as indicated: the kernel just provides

the three shapes [.], [], and [o], corresponding

to the outlines

�

,

�

L R

D

U

, and

�

L R

D

U

where the � denotes the point of the reference posi-

tion in the object (the �rst is a point). Extensions

can provide more shapes, however, all shapes set

the extent dimensions L, R, D, and U .

The default shape for objects is [] and for plain

coordinates it is [.].

Note: Extensions may add hshapei object

hmodi�eris of two kinds: either [hkeywordi] or

[hcharacteri hargumenti]. Some of these hshapeis

do other things than set the edge of the object.

4k. Setting the current direction is simply pretending

for the typesetting of the object (and the following

hmodi�eris) that some connection set it.

It is particularly easy to set absolute, hdiagional

directions:

dl = ld

d

dr = rd

r

ur = ru

u

ul = lu

l

Alternatively vhvectori sets the direction as if the

connection from 0 to the hvectori had been typeset

except that the origin is assumed zero such that di-

rections v(x,y) mean the natural thing, i.e., is the

direction of the connection from (0,0) to (x,y).

With the initial coordinate system this means that

the directions ur and v(1,1) are identical.

The action for a v reads a hvectori and sets the di-

rection accordingly using some expansion hackery

to propagate it out. The origin is cleared locally

to make v(x,y) behave as it should, i.e., use the

direction of

Once the initial direction is established as either

the last one or an absolute one then the remainder

of the direction is interpreted.

Adding _ and ^ denote the result of rotating the

default direction a right angle in the positive and

negative direction.

A trailing :hvectori is like vhvectori but uses the

hdirectioni to set up a standard square base such

that :(0,1) and :a(90) mean the same as ^ and

_ is equivalent to :(0,-1) and :a(-90).

To Do: Allow :a(hanglei).

Exercise 13: What is the e�ect of the

hmodi�eris v/1pc/ and v/-1pc/?

5 Decorations

hDecoriations are actual T

E

X macros that decorate the

current picture in manners that depend on the state.

They are used after the hposiition either of the outer

\xy: : :\endxy or inside {: : :}. The possibilities are

given in �gure 4 with notes below.

Most options add to the available hdecori, in particu-

lar the v2 option loads many more sinceX

Y

-pic versions

prior to 2.7 provided most features as hdecori.

Notes

5a. Saving and restoring allows `excursions' where lots

of things are added to the picture without a�ect-

ing the resulting X

Y

-pic state, i.e., c, p, and base,

and without requiring matching {}s. The indepen-

dence of {} is particularly useful in conjunction

with the \afterPOS command, for example, the

de�nition

\def\ToPOS{\save\afterPOS{%

\POS**{}?>*\dir2{>}**\dir2{-}

\restore};p,}

will make the code \ToPOS hposi make a dou-

ble arrow from the current object to the hposi

(computed relative to it) such that \xy *{A}

\ToPOS +<10mm,2mm> \endxy will typeset the pic-

ture

A

.

Note: Saving this way in fact uses the same state

as the {} `grouping', so the code p

1

, {p

2

\save},

: : : {\restore} will have c = p

1

both at the : : :

and at the end!

5b. One very tempting kind of T

E

X commands to per-

form as hdecori is arithmetic operations on the X

Y

-

pic state. This will work in simple X

Y

-pictures as

described here but be warned: it is not portable

because all X

Y

-pic execution is indirect, and this is

used by several options in nontrivial ways. Check

the T

E

X-nical documentation [11] for details about

this!

Macros that expand to hdecori will always do the

same, though.

12

Syntax Action

hdecori �! hcommandi hdecori either there is a command: : :

j hemptyi : : :or there isn't.

hcommandi �! \save hposi save state

5a

for restoration by later \restore, then do

hposi

j \restore restore state

5a

saved by matcing \save

j \POS hposi interpret hposi

j \afterPOS { hdecori } hposi interpret hposi and then perform hdecori

j \drop hobjecti drop hobjecti as the hposi * operation

j \connect hobjecti connect with hobjecti as the hposi ** operation

j \relax do nothing

j hT

E

X commandsi any T

E

X commands

5b

and user de�ned macros that

neither generates output (watch out for spaces!) nor

changes the grouping may be used

j \xyverbose j \xytracing j \xyquiet tracing

5c

commands

j \xyignore {hposi hdecori} ignore

5d

X

Y

-code

j \xycompileto {hnamei} {hposi hdecori} compile

5e

to �le hnamei.xyc

Figure 4: hdecoriations.

5c. \xyverbose will switch on a tracing of all the X

Y

-

pic commands executed. \xytracing traces even

more: the entire X

Y

-pic state is printed after each

modi�cation. \xyquiet restores default quiet op-

eration.

5d. Ignoring means that the hposi hdecori is still

parsed the usual way but nothing is typeset and

the X

Y

-pic state is not changed.

5e. It is possible to save the commands to generate

parts of anX

Y

-picture to a �le such that subsequent

typesetting of those parts is signi�cantly faster:

this is called compiling . The created �le will be

named hnamei.xyc and contain code to check that

the compiled code still corresponds to the hposi

hdecori as well as more e�cient compiled code to

redo it. If the hposi hdecori has changed then the

compilation is redone and hnamei.xyc recreated.

Bug: Currently you can only compile matrices

(built with the matrix feature) where all entries

are empty or start with something that is unex-

pandable.

6 Kernel object library

In this section we present the library objects provided

with the kernel language|several options add library

objects. They fall into three types: Most of the kernel

objects (including all those usually used with ** to

build connections) are directionals, described in x6.1.

The remaining kernel library objects are circles of x6.2

and text of x6.3.

6.1 Directionals

The kernel provides a selection of directionals: objects

that depend on the current direction. They all take

the form

\dirhdiri

to typeset a particular hdiriectional object. All have

the structure

hdiri �! hvarianti{hmaini}

with hvarianti being hemptyi or one of the characters

^_23 and hmaini some mnemonic code.

We will classify the directionals primarily intended

for building connections as connectors and those pri-

marily intended for placement at connection ends or as

markers as tips.

Figure 5 shows all the hdiriectionals de�ned by the

kernel with notes below; each hmaini type has a line

showing the available hvariantis. Notice that only some

variants exist for each hdiri|when a nonexisting vari-

ant of a hdiri is requested then the hemptyi variant

is used silently. Each is shown in either of the two

forms available in each direction as applicable: con-

necting a
 to a (typeset by **\dirhdiri) and as a

tip at the end of a dotted connection of the same vari-

ant (i.e., typeset by the hposi **\dirhvarianti{.} ?>

*\dirhdiri).

13

Dummy

6a

\dir{}

Plain connectors

6b

\dir{-} \dir2{-} \dir3{-}

\dir{.} \dir2{.} \dir3{.}

\dir{~} \dir2{~} \dir3{~}

\dir{--} \dir2{--} \dir3{--}

\dir{~~} \dir2{~~} \dir3{~~}

Plain tips

6c

\dir{>} \dir^{>} \dir_{>} \dir2{>} \dir3{>}

\dir{<} \dir^{<} \dir_{<} \dir2{<} \dir3{<}

\dir{|} \dir^{|} \dir_{|} \dir2{|} \dir3{|}

\dir{(} \dir^{(} \dir_{(}

\dir{)} \dir^{)} \dir_{)}

\dir^{`} \dir_{`}

\dir^{'} \dir_{'}

Constructed tips

6d

\dir{>>} \dir^{>>} \dir_{>>} \dir2{>>} \dir3{>>}

\dir{<<} \dir^{<<} \dir_{<<} \dir2{<<} \dir3{<<}

\dir{||} \dir^{||} \dir_{||} \dir2{||} \dir3{||}

\dir{|-} \dir^{|-} \dir_{|-} \dir2{|-} \dir3{|-}

\dir{>|} \dir{>>|} \dir{|<} \dir{|<<}

\dir{+} \dir{x} \dir{/} \dir{*}

�

\dir{o}

�

Figure 5: Kernel library hdiriectionals

As a special case an entire hobjecti is allowed as a

hdiri by starting it with a *: \dir* is equivalent to

\object.

Notes

6a. You may use \dir{} for a \dummy" directional

object (in fact this is used automatically by **{}).

This is useful for a uniform treatment of connec-

tions, e.g., making the ? hposi able to �nd a point

on the straight line from p to c without actually

typesetting anything.

6b. The plain connectors group contains basic direc-

tionals that lend themself to simple connections.

By default X

Y

-pic will typeset horizontal and verti-

cal \dir{-} connections using T

E

X rules. Unfortu-

nately rules is the feature of the DVI format most

commonly handled wrong by DVI drivers. There-

fore X

Y

-pic provides the hdecoriations

\NoRules

\UseRules

that will switch the use of such o� and on.

As can be seen by the last two columns, these (and

most of the other connectors) also exist in double

and triple versions with a 2 or a 3 prepended to

the name. For convenience \dir{=} and \dir{:}

are synonyms for \dir2{-} and \dir2{.}, re-

spectively; similarly \dir{==} is a synonym for

\dir2{--}.

6c. The group of plain tips contains basic objects that

are useful as markers and arrowheads making con-

14

nections, so each is shown at the end of a dotted

connection of the appropriate kind.

They may also be used as connectors and will build

dotted connections. e.g., **\dir{>} typesets

Exercise 14: Typeset the following two +s and

a tilted square:

+

+

Hint : the dash created by \dir{-} has the length

5pt.

6d. These tips are combinations of the plain tips

provided for convenience (and optimised for ef-

�ciency). New ones can be constructed using

\composite and by declarations of the form

\newdir hdiri {hcompositei}

which de�nes \dirhdiri as the hcompositei (see

note 4d for the details).

6.2 Circle segments

Circle hobjectis are round and typeset a segment of the

circle centered at the reference point. The syntax of

circles is described in �gure 6 with explanations below.

The default is to generate a full circle with the spec-

i�ed radius, e.g.,

\xy*\cir<4pt>{}\endxy typesets \ "

\xy*{M}*\cir{}\endxy | \

M

"

All the other circle segments are subsets of this and

have the shape that the full circle outlines.

Partial circle segments with horientiation are the

part of the full circle that starts with a tangent vec-

tor in the direction of the �rst hdiagional (see note 4k)

and ends with a tangent vector in the direction of the

other hdiagional after a clockwise (for _) or anticlock-

wise (for ^) turn, e.g.,

\xy*\cir<4pt>{l^r}\endxy typesets \ "

\xy*\cir<4pt>{l_r}\endxy | \ "

\xy*\cir<4pt>{dl^u}\endxy | \ "

\xy*\cir<4pt>{dl_u}\endxy | \ "

\xy*+{M}*\cir{dr_ur}\endxy | \

M

"

If the same hdiagi is given twice then nothing is typeset,

e.g.,

\xy*\cir<4pt>{u^u}\endxy typesets \ "

Special care is taken to setup the hdiagional defaults:

� After ^ the default is the diagonal 90

�

anticlock-

wise from the one before the ^.

� After _ the default is the diagonal 90

�

clockwise

from the one before the _.

The hdiagi before ^ or _ is required for \cir hobjectsi.

Exercise 15: Typeset the following shaded circle

with radius 5pt:

6.3 Text

Text in pictures is supported through the hobjecti con-

struction

\txt hwidthi hstylei {htexti}

that builds an object containing htexti typeset to

hwidthi using hstylei; in htexti \\ can be used as an

explicit line break; all lines will be centered. hstylei

should either be a font command or some other stu�

to do for each line of the htexti and hwidthi should be

either <hdimeni> or hemptyi.

7 X

Y

-pic option interface

Note: L

A

T

E

X users should also consult the paragraph

on \xy.sty" in x1.1.

X

Y

-pic is provided with a growing number of options

supporting specialised drawing tasks as well as exotic

output devices with special graphic features. These

should all be loaded using this uniform interface in or-

der to ensure that the X

Y

-pic environment is properly

set up while reading the option.

\xyoption { hoptioni }

\xyrequire { hoptioni }

\xyoption will load the X

Y

-pic option

�le xyhoptioni.tex; \xyrequire will do so only if it

is not already loaded, if it is then nothing happens.

Sometimes some declarations of an option or header

�le or whatever only makes sense after some particular

other option is loaded. In that case the code should be

wrapped in the special command

\xywithoption { hoptioni } { hcodei }

which indicates that if the hoptioni is already loaded

then hcodei should be executed now, otherwise it

should be saved and if hoptioni ever gets loaded then

hcodei should be executed afterwords.

Finally a description of the format of option �les:

they must look like

15

Syntax Action

\cir hradiusi { hciri } hciricle segment with hradiusi

hradiusi �! hemptyi use R

c

as the radius

j hvectori use X of the hvectori as radius

hciri �! hemptyi full circle of hradiusi

j hdiagi horienti hdiagi partial circle from �rst hdiagional through to the second

hdiagional in the horientiation

horienti �! ^ anticlockwise

j _ clockwise

Figure 6: hciricles.

%% hidenti�cationi

%% hcopyright, : : : i

\ifx\xyloaded\undefined \input xy \fi

\xyprovide{hoptioni}{hnamei}{hversioni}%

{hauthori}{hemaili}{haddressi}

hbody of the optioni

\xyendinput

The 6 arguments to \xyprovide should contain the

following:

hoptioni Option load name as used in the \xyoption

command. This should be safe and distinguishable

for any operating system and is thus limited to 6

characters chosen among the lowercase letters (a{

z), digits (0{9), and dash (-).

hnamei Descriptive name for the option.

hversioni Identi�cation of the version of the option.

hauthori The name(s) of the author(s).

hemaili The electronic mail address(es) of the au-

thor(s) or the a�liation if no email is available.

haddressi The postal address(es) of the author(s).

This information is used not only to print a nice ban-

ner but also to (1) silently skip loading if the same

version was preloaded and (2) print an error message

if a di�erent version was preloaded.

Part II

Extensions

This part documents the graphic capabilities added by

each standard extension option. For each is indicated

the described version number, the author, and how it

is loaded.

8 Curve and Spline extension

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{curve}

This option provides X

Y

-pic with the ability to typeset

spline curves and to construct curved connections using

arbitrary directional objects. Warning : Using curves

can be quite a strain on T

E

X's memory; you should

therefore limit the length and number of curves used

on a single page. Memory use is less when combined

with a backend capable of producing its own curves;

e.g., the PostScript backend).

Simple ways to specify curves inX

Y

-pic are as follows:

**\crv{hposlisti} curved connection

**\crvs{hdiri} get hposlisti from the stack

\curve{hposlisti} as a hdecoriation

in which hposlisti is a list of valid hposiitions. The

decoration form \curve is just an abbreviation for

\connect\crv. As usual, the current p and c are used

as the start and �nish of the connection, respectively.

Within hposlisti the hposiitions are separated by &. A

full description of the syntax for \crv is given in �g-

ure 7.

A

B

0

1

2

4

16

If hposlisti is empty a straight connection is com-

puted. When the length of hposlisti is one or two then

the curve is uniquely determined as a single-segment

B�ezier quadratic or cubic spline. The tangents at p

and c are along the lines connecting with the adjacent

control point. With three or more hposiitions a cubic

B-spline construction is used. B�ezier cubic segments

are calculated from the given control points.

The previous picture was typeset using:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{}

**\crv{(30,30)}

**\crv{(20,40)&(40,40)}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\endxy

except for the labels, which denote the number of en-

tries in the hposlisti. (Extending this code to include

the labels is set below as an exercise).

The ?-operator of x3 (note 3h) �nds arbitrary

hplaceis along a curve in the usual way.

Exercise 16: Extend the code given for the curves

in the previous picture so as to add the labels giving

the number of control points.

Using ? will set the current direction to be tangen-

tial at that hplacei, and one can hslidei speci�ed dis-

tances along the curve from a found hplacei using the

?: : :/hdimeni/ notation:

A

B

�

x

�

x

0

Q

P

Exercise 17: Suggest code to produce something like

the above picture; the spline curve is the same as in the

previous picture. Hints: The line is 140pt long and

touches 0:28 of the way from A to B and the x is 0.65

of the way from A to B.

The positions in hposlisti specify control points

which determine the initial and �nal directions of the

curve|leaving p and arriving at c|and how the curve

behaves in between, using standard spline construc-

tions. In general, control points need not lie upon the

actual curve.

A natural spline parameter varies in the interval [0; 1]

monotonically along the curve from p to c. This is used

to specify hplaceis along the curve, however there is no

easy relation to arc-length. Generally the parameter

varies more rapidly where the curvature is greatest.

The following diagram illustrates this e�ect for a cubic

spline of two segments (3 control points).

A

B

(<)

(>)

:1

:9

:2

:8

:3

:7

:4
:6

:5

Exercise 18: Write code to produce a picture such

as the one above. (Hint : Save the locations of places

along the curve for later use with straight connec-

tions.)

To have the same hposi occuring as a multiple control

point simply use a delimiter, which leaves the hposi

unchanged. Thus \curve{hposi&} uses a cubic spline,

whereas \curve{hposi} is quadratic.

Repeating the same control point three times in suc-

cession results in straight segments to that control

point. Using the default styles this is an expensive

way to get straight lines, but it allows for extra e�ects

with other styles.

Notes

8a. The \drop" object is set once, then \dropped"

many times at appropriately spaced places along

the curve. If directional, the direction from p to

c is used. Default behaviour is to have tiny dots

spaced su�ciently closely as to give the appear-

ance of a smooth curve. Specifying a larger size

for the \drop" object is a way of getting a dotted

curve (see the example in the next note).

8b. The \connect" object is also dropped at each place

along the curve. However, if non-empty, this object

uses the tangent direction at each place. This al-

lows a directional object to be speci�ed, whose ori-

entation will always match the tangent. To adjust

the spacing of such objects, use an empty \drop"

object of non-zero size as shown here:

A

B

:

:

:

:

:

:

:
:
:
:
:

:
: :
:

::

:

:

:

:

:

: :

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

\xy (0,0)*+{A}; (50,-10)*+{B}

17

Syntax Action

\curvehmodi�eri{hcurve-objectihposlisti} construct curved connection

hmodi�eri �! hemptyi zero or more modi�ers possible; default is ~C

j ~hcurve-optioni hmodi�eri set hcurve-optioni

hcurve-optioni �! p j P j l j L j c j C show only

8d

control points (p=points), joined by lines

(l=lines), or curve only (c=curve)

j pc j pC j Pc j PC show control points

8f

and curve

8e

j lc j lC j Lc j LC show lines joining

8g

control points and curve

8e

j cC plot curve twice, with and without speci�ed formatting

hcurve-objecti �! hemptyi use the appropriate default style

j ~*hobjecti hcurve-objecti specify the \drop" object

8a

and maybe more

8c

j ~**hobjecti hcurve-objecti specify the \connect" object

8b

and maybe more

8c

hposlisti �! hemptyi j hposi hdelimi hposlisti list of positions for the control points

j ~@ j ~@ hdelimi hposlisti add the current stack

8h

to the control points

hdelimi �! & allowable delimiter

Figure 7: Syntax for curves.

**\crv{~*=<4pt>{.} (10,10)&(20,0)&(40,15)}

\crv{~*=<8pt>{}~!/-5pt/\dir{>}(10,-20)

&(40,-15)} \endxy

When there is no \connect" object then the tan-

gent calculations are not carried out, resulting in

a saving of time and memory; this is the default

behaviour.

8c. The \drop" and \connect" objects can be speci�ed

as many times as desired. Only the last speci�-

cation of each type will actually have any e�ect.

(This makes it easy to experiment with di�erent

styles.)

8d. Complicated diagrams having several spline curves

can take quite a long time to process and may use

a lot of T

E

X's memory. A convenient device, espe-

cially while developing a picture, is to show only

the location of the control points or to join the

control points with lines, as a stylized approxima-

tion to the spline curve. The hcurve-optionis ~p

and ~l are provided for this purpose. Uppercase

versions ~P and ~L do the same thing but use any

hcurve-objectis that may be speci�ed, whereas the

lowercase versions use plain defaults: small cross

for ~p, straight line for ~l. Similarly ~C and ~c set

the spline curve using any speci�ed hcurve-optionis

or as a (default) plain curve.

8e. Use of ~p, ~l, etc. is extended to enable both the

curve and the control points to be easily shown in

the same picture. Mixing upper- and lower-case

speci�es whether the hcurve-optionis are to be ap-

plied to the spline curve or the (lines joining) con-

trol points. See the examples accompanying the

next two notes.

8f. By default the control points are marked with a

small cross, speci�ed by *\dir{x}. The \connect"

object is ignored completely.

A

B

:

:

:

:

:
:
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

::

:

:

:

:

:

:

:

:

:
:::

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

was typeset by : : :

\xy (0,0)*+{A};(50,-10)*+{B}

**\crv~pC{~*=<\jot>{.}(10,-10)&(20,15)

&(40,15)} \endxy

8g. With lines joining control points the default

\drop" object is empty, while the \connect" object

is \dir{-} for simple straight lines. If non-empty

the \drop" object is placed at each control point.

The \connect" object may be used to specify a

fancy line style.

18

A

B

�

�

was typeset by : : :

\xy (0,0)*+{A};(50,-10)*+{B}

\crv~Lc{~\dir{--}~*{\oplus}(20,20)

&(35,15)} \endxy

8h. When a stack of hposiitions has been established

using the @i and @+ commands, these positions can

be used and are appended to the hposlisti.

Note: Curves will be accessible to users through a

\crvhdiri command that makes a curve out of every

directional. This is not �nished yet.

9 Frame and Bracket extension

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{frame}

The frame extension provides a variety of ways to puts

frames in X

Y

-pictures.

The frames are X

Y

-pic hobjectis on the form

\frmhmodi�ersi{hframei}

to be used in hposiitions: Dropping a frame

with *: : :\frm: : :{hframei} will frame the c object

modi�ed by the given modi�ers; connecting with

**: : :\frm: : :{hframei} will frame the object c.p mod-

i�ed by the given modi�ers.

Below we distinguish between ordinary frames and

`brackets'.

9.1 Frames

Figure 8 shows the possible frames and the applicable

hmodi�eris with reference to the notes below.

Notes

9a. The \frm{} frame is a dummy useful for not

putting a frame on something, e.g., in macros that

take a hframei argument.

9b. Rectangular frames include \frm{.}, \frm{-},

\frm{=}, \frm{--}, \frm{==}, and \frm{o-}.

They all make rectangular frames that essentially

trace the border of a rectangle-shaped object.

The hframeis \frm{-} and \frm{=} allow an op-

tional corner radius that rounds the corners of

the frame with quarter circles of the speci�ed ra-

dius. This is not allowed for the other frames|

the \frm{o-} frame always gives rounded cor-

ners of the same size as the used dashes (when

\xydashfont is the default one then these are 5pt

in radius).

Exercise 19: How do you think the author type-

set the following?

A

B

9c. Two frames put just rules in the picture: \frm{,}

puts a shade beneath the (assumed rectangu-

lar) object giving the illusion of `lifting' it;

\frm<hdimeni>{,}makes this shade hdimeni deep.

\frm{*} just puts a black rule on top of the object.

\frm{-,} combines a \frm{-} with a \frm{,}.

9d. Circles done with \frm{o} have radius as (R+L)=2

and with \frm<hdimeni>{o} have radius as the

hdimeni; \frm{oo} makes a double circle with the

outermost circle being the same as that of \frm{o}.

Exercise 20: What is the di�erence between

*\cir{} and *\frm{o}?

To Do: Allow hframe variantis like those used for

directionals, i.e., \frm2{-} should be the same as

\frm{=}. Add \frm{o,} and more brackets.

9.2 Brackets

The possible brackets are shown in �gure 9 with notes

below.

Notes

9e. Braces are just the standard plain T

E

X large braces

inserted correctly in X

Y

-pic pictures with the `nib'

aligned with the reference point of the object they

brace.

Exercise 21: How do you think the author type-

set the following?

A

B

z }| {

| {z }

19

Framed with

\frm{}

frame

9a

Framed with

\frm{.}

frame

9b

Framed with

\frm{-}

frame

9b

Framed with

\frm<8pt>{-}

frame

9b

Framed with

\frm<100pt>{-}

frame

9b

Framed with

\frm{=}

frame

9b

Framed with

\frm<8pt>{=}

frame

9b

Framed with

\frm<100pt>{=}

frame

9b

Framed with

\frm{--}

frame

9b

Framed with

\frm{o-}

frame

9b

Framed with

\frm{,}

frame

9c

Framed with

\frm<5pt>{,}

frame

9c

Framed with

\frm{-,}

frame

9c

Framed with

\frm{o}

frame

9d

Framed with

\frm<8pt>{o}

frame

9d

Framed with

\frm{oo}

frame

9d

Framed with

\frm<8pt>{oo}

frame

9d

Framed with \frm{*} frame : : : should only be used

for relatively small (and probably empty) objects

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

These are

overlayed

with the

\frm{.}

frame above

to show the

way they are

centered on

the object

Figure 8: Plain hframeis.

Framed with

\frm{_\}}

frame

9e

| {z }

Framed with

\frm{^\}}

frame

9e

z }| {

Framed with

\frm{\{}

frame

9e

8

>

<

>

:

Framed with

\frm{\}}

frame

9e

9

>

=

>

;

Framed with

\frm{_)}

frame

9f

| }

Framed with

\frm{^)}

frame

9f

z {

Framed with

\frm{(}

frame

9f

8

>

>

>

>

>

>

>

:

Framed with

\frm{)}

frame

9f

9

>

>

>

>

>

>

>

;

Figure 9: Bracket hframeis.

20

9f. Parenthesis are like braces except they have no

nib and thus do not depend on where the reference

point of c is.

Bug: The brackets above requires that the computer

modern cmex font is loaded in font position 3.

To Do: Some new frames and several new brackes

should be added.

10 Computer Modern tip exten-

sion

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{cmtip}

This option provides arrow heads in the style of the

Computer Modern fonts by Knuth (see [6] and [5, ap-

pendix F]). These are often more pleasing in connection

with curved arrows.

The user can switch the \computer modern" versions

of the directionals shown in �gure 10 on and o� with

these declarations:

\UseComputerModernTips

\NoComputerModernTips

They are local and thus can be switched on and/or o�

for individual pictures using the T

E

X grouping mecha-

nism, e.g.,

\xy*{} \ar

@{*{\UseComputerModernTips\dir{<}}%

-*{\NoComputerModernTips\dir{>}}}

(20,5)*{} \endxy

will typeset

regardless of the tip choice in the surrounding text.

11 Line styles extension

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{line}

This extension provides the ability to request various

e�ects related to the appearance of straight lines; e.g..

thickness, non-standard dashing, and colour.

These are e�ects which are not normally available

within T

E

X. Instead they require a suitable `back-end'

option to provide the necessary \special commands,

or extra fonts, together with appropriate commands to

implement the e�ects. Thus

Using this extension will have no

e�ect on the output unless used with

a backend that explicitly supports it.

The extension provides special e�ects that can be used

with any X

Y

-pic hobjecti by de�ning [hshapei] modi-

�ers. The modi�cation is local to the hobjecti currently

being built, so will have no e�ect if this object is never

actually used.

The following table lists the modi�ers that have so

far been de�ned. They come in two types { either a

single keyword, or a key-character with the following

text treated as an argument.

[thicker] double line thickness

[thinner] halve line thickness

[|hdimeni] set thickness to hdimeni

[|=hwordi] make [hwordi] set current

style settings

[|*] reuse previous style

Later settings of the linewidth override earlier settings;

multiple calls to [thicker] and [thinner] compound.

Saving styles Once speci�ed for an hobjecti, the

collection of styles can be assigned a name, via

[|=hwordi]. Then [hwordi] becomes a new style, suit-

able for use with the same or other hobjectsis. Use a

single hwordi built from ordinary letters. A warning

message will be placed in the log �le:

XY-pic Warning: Defining new style [hwordi]

If [hwordi] already had meaning the new de�nition

will still be imposed, but the following type of warning

will be issued:

XY-pic Warning: Redefining style [hwordi]

The latter warning will appear if the de�nition occurs

within an \xymatrix or \diagram. This is perfectly

normal, being a consequence of the way that the matrix

code is handled. Similarly the message may appear

several times if the style de�nition is made within an

\ar.

The following illustrates how to avoid these messages

by de�ning the style without typesetting anything.

\setbox0=\hbox{%

\xy\drop[OrangeRed][|=A]{}\endxy}

Note 1: The current colour is regarded as part of

the style for this purpose.

Note 2: Such namings are global in scope. They are

intended to allow a consistent style to be easily main-

tained between various pictures and diagrams within

the same document.

Colours This extension supports a few standard

colours as styles: [red], [green], [blue], [cyan],

[magenta], [yellow], [black], [white] and [gray].

More extensive colour support is available using the

color extension.

The diagram in �gure 11, page 24, uses di�erent line-

thicknesses and colours.

21

Plain Computer Modern tips

\dir{>} \dir^{>} \dir_{>}

\dir{<} \dir^{<} \dir_{<}

Constructed Computer Modern tips

\dir{>>} \dir^{>>} \dir_{>>}

\dir{<<} \dir^{<<} \dir_{<<}

\dir{>|} \dir{>>|} \dir{|<}

Figure 10: Computer Modern hdiriectionals

12 Rotate and Scale extension

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{rotate}

This extension provides the ability to request that any

object be displayed rotated at any angle as well as

scaled in various ways.

These are e�ects which are not normally available

within T

E

X. Instead they require a suitable `back-end'

option to provide the necessary \special commands,

or extra fonts, together with appropriate commands to

implement the e�ects. Thus

Using this extension will have no

e�ect on the output unless used with

a backend that explicitly supports it.

The extension provides special e�ects that can be

used with any X

Y

-pic hobjecti by de�ning [hshapei]

modi�ers. The modi�cation is local to the hobjecti

currently being built, so will have no e�ect if this object

is never actually used.

The following table lists the modi�ers that have so

far been de�ned. They come in two types { either a

single keyword, or a key-character with the following

text treated as a single argument.

[@] align with current direction

[@hdirectioni] align to hdirectioni

[@!hnumberi] rotate hnumberi degrees

[*hnumberi] scale by hnumberi

[*hnumi

x

,hnumi

y

] scale x and y separately

[left] rotate anticlockwise by 90

�

[right] rotate (clockwise) by 90

�

[flip] rotate by 180

�

; same as

[*-1,-1]

[dblsize] scale to double size

[halfsize] scale to half size

These [hshapei] modi�ers specify transformations of

the hobjecti currently being built. If the object has a

rectangle edge then the size of the rectangle is trans-

formed to enclose the transformed object; with a circle

edge the radius is altered appropriately.

Each successive transformation acts upon the result

of all previous. One consequence of this is that the

order of the shape modi�ers can make a signi�cant dif-

ference in appearance|in general, transformations do

not commute. Even successive rotations can give dif-

ferent sized rectangles if taken in the reverse order.

Sometimes this change of size is not desirable. The

following commands are provided to modify this be-

haviour.

\NoResizing prevents size adjustment

\UseResizing restores size adjustments

The \NoResizing command is also useful to have at

the beginning of a document being typeset using a

driver that cannot support scaling e�ects, in partic-

ular when applied to whole diagrams. In any case an

unscaled version will result, but now the spacing and

positioning will be appropriate to the unscaled rather

than the scaled size.

Scaling and Scaled Text The hshapei modi�er can

contain either a single scale factor, or a pair indicating

di�erent factors in the x- and y-directions. Negative

values are allowed, to obtain re
ections in the coordi-

nate axes, but not zero.

Rotation and Rotated Text Within [@...] the

... are parsed as a hdirectioni locally, based on the cur-

rent direction. The value of count register \Direction

contains the information to determine the requested

direction. When no hdirectioni is parsed then [@] re-

quests a rotation to align with the current direction.

The special sequence [@!...] is provided to pass

an angle directly to the back-end. The X

Y

-pic size

and shape of the hobjecti with \rectangleEdge is un-

changed, even though the printed form may appear ro-

22

tated. This is a feature that must be implemented spe-

cially by the back-end. For example, using the Post-

Script back-end, [@!45] will show the object rotated

by 45

�

inside a box of the size of the unrotated object.

To Do: Provide example of repeated, named trans-

formation.

Re
ections Re
ections can be speci�ed by a com-

bination of rotation and a
ip | either [hflip] or

[vflip].

Shear transformations To Do: Provide the struc-

ture to support these; then implement it in Post-

Script.

Example The diagram in �gure 11 illustrates many

of the e�ects described above as well as some additional

ones de�ned by the color and rotate extensions.

Exercise 22: Suggest the code used by the author

to typeset 11.

The actual code is given in the solution to the exer-

cise. Use it as a test of the capabilities of your DVI-

driver. The labels should �t snugly inside the accom-

panying rectangles, rotated and
ipped appropriately.

Bug: This �gure also uses colours, alters line-

thickness and includes some PostScript drawing.

The colours may print as shades of gray, with the line

from A to B being thicker than normal. The wider

band sloping downwards may have di�erent width and

length according to the DVI-driver used.

13 Colour extension

Vers. 2.10 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{color}

This extension provides the ability to request that any

object be displayed in a particular colour.

These are e�ects which are not normally available

within T

E

X. Instead they require a suitable `back-end'

option to provide the necessary \special commands,

or extra fonts, together with appropriate commands to

implement the e�ects. Thus

Using this extension will have no

e�ect on the output unless used with

a backend that explicitly supports it.

Colours are speci�ed as a hshapei modi�er which

gives the name of the colour requested. It is applied

to the whole of the current hobjecti whether this be

text, an X

Y

-pic line, curve or arrow-tip, or a composite

object such as a matrix or the complete picture. How-

ever some DVI drivers may not be able to support the

colour in all of these cases.

[hcolour namei] use named colour

\newxycolor{hnamei}{hcodei} de�ne new colour

\UseCrayolaColors extra colour names

If the DVI-driver cannot support colour then a re-

quest for colour only produces a warning message in the

log �le. After two such messages subsequent requests

are ignored completely.

Named colours and colour models New colour

names are created with \newxycolor, taking two ar-

guments. Firstly a name for the colour is given, fol-

lowed by the code which will ultimately be passed to

the output device in order to specify the colour. If

the current driver cannot support colour, or grayscale

shading, then the new name will be recognised, but

ignored during typesetting.

For PostScript devices, the X

Y

-ps PostScript

dictionary de�nes operators rgb, cmyk and gray cor-

responding to the standard RGB and CMYK colour

models and grayscale shadings. Colours and shades

are described as: r g b rgb or c m y k cmyk or s

gray, where the parameters are numbers in the range

0 � r; g; b; c;m; y; k; s � 1. The operators link to the

built-in colour models or, in the case of cmyk for ear-

lier versions of PostScript, give a simple emulation

in terms of the RGB model.

Saving colour and styles When styles are saved

using [|=hwordi], see x11, then the current colour set-

ting (if any) is saved also. Subsequent use of [hwordi]

recovers the colour and accompanying line-style set-

tings.

Further colour names are de�ned by the command

\UseCrayolaColours that loads the �le xyps-col.tex

where more colours are de�ned (consult the �le for the

colours and their their speci�cations in the RGB or

CMYK models):

xyps-col.tex: This included �le (version 2.10)

provides de�nitions for the 68 colours recognised by

name by Tomas Rokicki's dvips driver [10]. These

colours become available for use in X

Y

-pic pictures and

diagrams, as [hshapei] modi�ers.

The information has been copied from Rokicki's

color.proPostScript prolog �le: \There are 68 pre-

de�ned colours, with names taken primarily from the

Crayola crayon box of 64 colours" [10, x16.1].

23

A

B

~

|

l

a

b

e

l

1

:

l

a

b

e

l

2

�

label 3

label4

label 5

�

label6

label 7

l

a

b

e

l

8

s

p

e

c

i

a

l

e

�

e

c

t

:

a

l

i

g

n

e

d

t

e

x

t

Figure 11: Rotations, scalings and
ips

Part III

Features

This part documents the notation added by each stan-

dard feature option. For each is indicated the described

version number, the author, and how it is loaded.

The �rst two, `all' and `dummy', described in xx14

and 15, are trivial features that nevertheless prove use-

ful sometimes. The next two, `arrow' and `2cell', de-

scribed in x16 and 17, provide special commands for

objects that `point'. The following two, `matrix' and

`graph', described in xx18 and 19, are input modes that

support di�erent overall structuring of (parts of) X

Y

-

pictures. The �nal feature, `v2' described in x21, sup-

ports the input mode and arrow commands that were

available in X

Y

-pic version 2.

14 All features

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{all}

As a special convenience, this feature loads all standard

features (except v2, the version 2 compatibility) and

extensions; no backend is loaded.

15 Dummy option

Vers. 2.7 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{dummy}

This option is provided as a template for new options,

it provides neither features nor extensions.

16 Arrow and Path feature

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{arrow}

This feature provides X

Y

-pic with the arrow paradigm

presented in [12].

The basic concept introduced is the path: a connec-

tion that starts from c (the current object), ends at

a speci�ed object, and may be split into several seg-

ments between intermediate speci�ed objects that can

be individually labelled, change style, have breaks, etc.

x16.1 is about the \PATH primitive, including the syn-

tax of paths, and x16.2 is about the \ar

5

customisa-

tion of paths to draw arrows using X

Y

-pic directional

objects.

16.1 Paths

The fundamental commands of this feature are \PATH

and \afterPATH that will parse the hpathi according

to the grammar in �gure 12 with notes below.

Notes

16a. An hactioni can be either of the characters =<>-/.

The associated hstu�i is saved and used to call

\PATHactionhactioni{hstu�i}

at speci�c times while parsing the hpathi:

hactioni applied: : :

= before every segment

< before next segment

> before last segment

- for every subsegment

/ after every segment

5

This name is in con
ict with the command of the same name

in Karl Berry's eplain format. Fortunately users are unlikely to

want both that and X

Y

-pic.

24

Syntax Action

\PATH hpathi interpret hpathi

\afterPATH{hdecori} hpathi interpret hpathi and then run hdecori

hpathi �! ~ hactioni { hstu�i } hpathi set hactioni

16a

to hstu�i

j ~ + { hlabelsi } hpathi set default hlabelsi

16b

j ~ { hstu�i } hpathi set failure continuation

16c

to hstu�i

j ' hsegmenti hpathi make straight segment

16d

j ` hturni hsegmenti hpathi make turning segment

16f

j hsegmenti make last segment

16g

hturni �! hdiagi hturnradiusi 1/4 turn

16f

starting in hdiagi

j hciri hturnradiusi explicit turn

16f

hturnradiusi �! hemptyi use default turn radius

j / hdimeni set turnradius to hdimeni

hsegmenti �! hpath-posi hslidei hlabelsi segment

16e

with hslidei and hlabelsi

hslidei �! hemptyi j < hdimeni > optional slide

16h

: hdimeni in the \above" direction

hlabelsi �! ^ hanchori hiti haliasi hlabelsi label with hiti

16i

above hanchori

j _ hanchori hiti haliasi hlabelsi label with hiti

16i

below hanchori

j | hanchori hiti haliasi hlabelsi break with hiti

16j

at hanchori

j hemptyi no more labels

hanchori �! - hanchori j hplacei label/break placed relative to the hplacei where - is a

synonym for <>(.5)

hiti �! hdigiti j hletteri j {htexti} j hcsi hiti is a default label

16k

j * hobjecti hiti is an hobjecti

j @ hdiri hiti is a hdiriectional

haliasi �! hemptyi j ="hidi" optional name for label object

16l

Figure 12: hpathis

The =<> actions are always expanded in that se-

quence after p and c have been set up to the proper

start and end of the segment but before any hlabelsi

are interpreted, the - action is expanded for each

subsegment after all hlabelsi have been interpreted

(see also note 16d), and �nally the / action is ap-

plied.

The default \PATHaction macro just expands to

\\POS hstu�i \relax" thus hstu�i should be of the

form hposi hdecori. The user can rede�ne this|in

fact the \ar command described in x16.2 below is

little more than a special \PATHaction command

and a clever defaulting mechanism.

16b. De�ning default hlabelsi will insert these �rst in

the label sequence of every hsegmenti. This is use-

ful to draw connections with a `center marker' in

particular with arrows, e.g., the `mapsto' example

explained below can be changed into a `breakto'

example: typing

\xy*+{0}\PATH

~={**{}}

~>{\save?>*\dir{>}\restore}

~-{**\dir{-}}

~+{|*\dir{/}}

'(10,1)*+{1} '(20,-2)*+{2} (30,0)*+{3}

\endxy

will typeset

0

1

2

3

Note, however, that what goes into ~+{: : :} is

hlabelsi and thus not a hposi { it is not an action

in the sense explained above.

16c. Specifying ~{hstu�i} will set the \failure contin-

uation" to hstu�i. This will be inserted when the

last hsegmenti is expected|it can even replace it

or add more hsegmentis, i.e.,

\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

25

~{'(20,-2)*+{2} (30,0)*+{3}} '(10,1)*+{1}

\endxy

is equivalent to

\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

'(10,1)*+{1} '(20,-2)*+{2} (30,0)*+{3}

\endxy

typesetting

0

1

2

3

because when \endxy is seen then the parser knows

that the next symbol is neither of the characters

~'` and hence that the last hsegmenti is to be ex-

pected. Instead, however, the failure continuation

is inserted and parsed, and the hpathi is �nished

by the inserted material.

Failure continuations can be nested:

\xy *+{0} \PATH ~={**{}} ~-{**\dir{-}}

~{~{(30,0)*+{3}}

'(20,-2)*+{2}} '(10,1)*+{1}

\endxy

will also typeset the connected digits.

16d. A \straight segment" is interpreted as follows:

1. First p is set to the end object of the previous

segment (for the �rst segment this is c just

before the path command) and c is set to the

hposi starting the hsegmenti, and the current

hslidei is applied.

2. Then the = and < segment actions are ex-

panded (in that sequence) and the < action

is cleared. The resulting p and c become the

start and end object of the segment.

3. Then all hlabelsi (starting eith the ~+-de�ned

ones) are interpreted and typeset as described

below.

4. Finally the subsegment actions are expanded:

If there were n breaks then there are n + 1

subsegments and thus \PATHaction-{ hstu�i

} will be expanded n + 1 times. The ith ex-

pansion, i 2 f1; : : : ; n+1g, will be performed

with

p = b

0

. b

i�1

c = b

n+1

. b

i

where b

i

denotes break i except that b

0

is the

start and b

n+1

the end object of the segment.

Example: Typically ~= is used to do something

that will setup the ?hplacei format to suit the seg-

ment connection which is then used by ~< to add

something to the `tail' of the path and by ~> to

add to its `head', and �nally ~- is used to actually

typeset the connection beween the given breaks.

For example,

\xy*+{0}\PATH

~={**i\dir{-}}

~<{\save;?<*\dir{|}\restore}

~>{\save?>*\dir{>}\restore}

~-{**\dir{-}}

'(10,1)*+{1}|b '(20,-2)*+{2} (30,0)*+{3}

\endxy

will build a `mapsto path'

0

1

b

2

3

as follows: For each segment we do the following:

(1) let = typeset an invisible connection that will

make ? behave correctly; (2) let < make the start

point (p) of the �rst segment be a \dir{|} on the

edge of the original p (the ;s make us modify p

rather than c); (3) let > make the end point of the

last segment be a \dir{>} tip; and (4) let - typeset

each subsegment of the connection as a solid line

(that will trace the invisible one set up in (1)).

Numerous variations are possible by varying what

goes in which actions, e.g.,

~={**i\dir{-}

\save;?<*\dir{|}; ?>*\dir{>}

\restore}

~-{**\dir{-}}

typesets

0

1

b

2

3

with every segment a separate mapsto arrow, and

~={**i\dir{-}}

~-{**\dir{-}

\save;?<*\dir{|}; ?>*\dir{>}

\restore}

typesets

0

1

b

2

3

16e. A segment is a part of a hpathi between a previ-

ous and a new target given as a hpath-posi: nor-

mally this is just a hposi as described in x3 but it

can be changed to something else by changing the

control sequence \PATHafterPOS to be something

other than \afterPOS.

16f. A turning segment is one that does not go all the

way to the given hposi but only as far as required

26

to make a turn towards it. The c is set to the actual

turn object after a turning segment such that sub-

sequent turning or other segments will start from

there, in particular the last segment (which is al-

ways straight) can be used to �nish a winding line.

What the turn looks like is determined by the

hturni form:

hemptyi Nothing between the ` and the hposi is

interpreted the same as giving just the hdiagi

last used out of a turn.

hdiagi Specifying a single hdiagi d is the same as

specifying either of the hciricles d^ or d_, de-

pending on whether the speci�ed hposi has its

center `above' or `below' the line from p in the

hdiagional direction.

hciri When a full explicit hciricle is available then

the corresponding hciricle object is placed

such that its ingoing direction is a continu-

ation of a straight connection from p and the

outgoing direction points such that a follow-

ing straight (or last) segment will connect it

to c (with the same slide).

Here is an example using all forms of hturnis:

base

A

a

B

b

C

c

d

e

was typeset by

\xy <4pc,0pc>:(0,0)

*+\txt{base}="base"

\PATH ~={**{}} ~-{**\dir{-}?>*\dir{>}}

`l (-1,-1)*{A} ^a

` (1,-1)*{B} ^b

`_ul (1, 0)*{C} ^c

`ul^l "base" ^d

"base" ^e

\endxy

Bug: Turns are only really resonable for paths

that use straight lines like the one above.

Note: Always write a valid hposi after a hturni,

otherwise any following ^ or _ labels can confuse

the parser. So if you intend the ^r in `^r to be a

label then write `,^r, using a dummy , hposiition.

The default used for turnradius can be set by the

operation

\turnradius hadd opi {hdimeni}

that works like the kernel \objectmargin etc.

commands; it defaults to 10pt.

Exercise 23: Typeset

A

using hturnis.

16g. The last segment is exactly as a straight one ex-

cept that the > action (if any) is executed (and

cleared) just after the < action.

16h. \Sliding" a segment means moving each of the

p; c objects in the direction perpendicular to the

current direction at each.

16i. Labelling means that hiti is dropped relative to

the current segment using a ? hposiition. This thus

depends on the user setting up a connection with

a ** hposi as one of the actions|typically the =

action is used for this (see note 16d for the details).

The only di�erence between ^ and _ is that they

shift the label in the ^ respectively _ direction; for

straight segments it is placed in the \superscript"

or \subscript" position.

Labels will be separated from the connection by

the labelmargin that you can set with the operation

\labelmargin hadd opi {hdimeni}

that works like the kernel \objectmargin com-

mand; in fact labelmargin defaults to use object-

margin if not set.

16j. Breaking means to \slice a hole" in the connection

and insert hiti there. This is realized by typeset-

ting the connection in question in subsegments, one

leading to the break and one continuing after the

break as described in notes 16a and 16d.

16k. Unless hiti is a full-
edged hobjecti (by using the

* form), it is typeset using a \labelbox object

(initially similar to \objectbox of basic X

Y

-pic but

using \labelstyle for the style).

Remark: You can only omit the {}s around single

letters, digits, and control sequences.

16l. A label is an object like any other in the X

Y

-

picture. Inserting an haliasi ="hidi" saves the label

object as "hidi" for later reference.

Exercise 24: Typeset

A

label

27

Syntax Action

\ar harrowi hpathi make harrowi along hpathi

harrowi �! hformi* harrowi has the hformis

hformi �! @ hvarianti use hvarianti of arrow

j @ hvarianti { htipi } build arrow

16m

using hvarianti of a standard stem and

htipi for the head

j @ hvarianti { htipi hconni htipi } build arrow

16m

using hvarianti of htipi, hconni, and

other htipi as arrow tail, stem, and head (in that or-

der)

j @/ hdirectioni hdisti / curve

16o

arrow the hdistiance towards hdirectioni

j @' { hcontrol pointsi } curve arrow using control points

16p

j @* { hmodi�eri* } use object hmodi�eris

16q

for all objects

j | hanchori hiti break each segment at hanchori with hiti

j ^ hanchori hiti j _ hanchori hiti label each segment at hanchori with hiti

hvarianti �! hemptyi j ^ j _ j 0 j 1 j 2 j 3 hvarianti: plain, above, below, double, or triple

htipi �! htipchari* directional named as the sequence of htipcharis

j hdiri any hdiriectional

16n

htipchari �! < j > j (j) j | j ' j ` j + j / recognised tip characters

j hletteri j hspacei more tip characters

hconni �! hconnchari* directional named as the sequence of hconncharis

j hdiri any hdiriectional

16n

hconnchari �! - j . j ~ j = j : recognised connector characters

Figure 13: harrowis.

16.2 Arrows

Arrows are paths with a particularly easy syntax for

setting up arrows with tail , stem, and head in the

style of [12]. This is provided by a single hdecoriation

the syntax of which is described in �gure 13 (with the

added convention that a raised `*' means 0 or more

repetitions of the preceeding nonterminal).

Notes

16m. Building an harrowi is simply using the speci�ed

directionals (using \dir of x6.1) to build a path:

the �rst htipi becomes the arrow tail of the ar-

row, the hconniection in the middle becomes the

arrow stem, and the second htipi becomes the ar-

row head . If a hvarianti is given before the { then

that variant \dir is used for all three. For exam-

ple,

\xy\ar @^{(->} (20,7)\endxy

typesets

Exercise 25: Typeset these arrows:

A

A

0

A

00

A

000

B

B

0

B

00

B

000

The above is a
exible scheme when used in con-

junction with the kernel \newdir to de�ne all sorts

of arrowheads and -tails. For example,

\newdir{|>}{!/4.5pt/\dir{|}

*:(1,-.2)\dir^{>}

*:(1,+.2)\dir_{>}}

de�nes a new arrow tip that makes

\xy (0,0)*+{A}

\ar @{=|>} (20,3)*+{B}

\endxy

typeset

A

B

Notice that the fact that the directional uses only

htipchari characters means that it blends naturally

with the existing tips.

28

Exercise 26: Often tips used as `tails' have their

ink on the wrong side of the point where they are

placed. Fortunately space is also a htipchari so we

can de�ne \dir{ >} to generate a `tail' arrow. Do

this such that

\xy (0,0)*+{A}="a", (20,3)*+{B}="b"

\ar @{>->} "a";"b" < 2pt>

\ar @{ >->} "a";"b" <-2pt>

\endxy

typesets

A

B

16n. Specifying a hdiri as a htipi or hconni means that

\dirhdiri is used for that htipi or hconni. For ex-

ample,

\xy\ar @{<^{|}>} (20,7)\endxy

typesets

When using this you must specify a {} dummy

hdiriectional in order to ignore one of the tail, stem,

or tip components, e.g.,

\xy\ar @{{}{+}>} (20,7)\endxy

typesets

In particular *hobjecti is a hdiri so any hobjecti

can be used for either of the tail, stem, or head

component:

\xy\ar @{*{x}*{y}*{z}} (20,7)\endxy

typesets

x

z

y

y

y

y

y

y

y

y

y

Note: A * introduces an hobjecti whereas the di-

rectional `

�

' is typeset by the hdiri {*}.

Exercise 27: Typeset

using only one \ar command.

16o. Curving the arrow by /d`/, where d is a

hdirectioni and ` a hdimenision, makes the stem

a curve which is similar to a straight line but has

had it's center point `dragged' the distance ` in d:

"

#

u

d

was typeset by

\xy

\POS (0,10) *\cir<2pt>{} ="a"

, (20,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/^1ex/ "b"|\uparrow

\POS"a" \ar @/_1ex/ "b"|\downarrow

%

\POS (20,10) *\cir<2pt>{} ="a"

, (40,-10)*\cir<2pt>{} ="b"

\POS"a" \ar @/u1ex/ "b"|u

\POS"a" \ar @/d1ex/ "b"|d

\endxy

This is really just a shorthand for curving using

the more general form described next: @/d`/ is the

same as @'{ @+{**{} ?+/d 2` /} } which makes

the (quadratic) curve pass through the point de-

�ned by the hposi **{} ?+/d`/.

16p. The second curve form is the more general one

where more than one control point can be de-

�ned. The kernel stack is used for this purpose:

the hcontrol pointsi should be a hposi pushing the

control points in sequence on the stack: with the

sequence c

1

; : : : ; c

k

of control hcoordiinates this re-

sults in the hformi

@'{ @+c

1

: : :@+c

k

}

See the curve extension described in x8 for the way

the control points are used.

Exercise 28: Typeset the `balloon arrow'

�

Hint : it uses a curve with three control points.

16q. A @*{: : :} formation de�nes what object

hmodi�eris should be used when building objects

that are part of the arrow. This is mostly use-

ful in conjunction with extensions that de�ne

additional [hshapei] modi�ers, e.g., if a [red]

hmodi�eri changes the colour of an object to red

then @*{[red]} will make the entire arrow red.

All the features of hpathis described above are avail-

able for arrows.

29

17 Two-cell feature

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{2cell}

This feature is designed to facilitate the typesetting of

curved arrows, either singly or in pairs, together with

labels on each part and between. The intended math-

ematical usage is for typesetting categorical \2-cell"

morphisms and \pasting diagrams", for which special

features are provided. These features also allow attrac-

tive non-mathematical e�ects.

The 2-cell feature makes use of facilities from the

`curve' extension which is therefore automatically

loaded.

17.1 Typesetting 2-cells in Diagrams

Categorical \2-cell" morphisms are used in the study

of tensor categories and elsewhere. The morphisms

are displayed as a pair of curved arrows, symmetri-

cally placed, together with an orientation indicated by

a short broad arrow, or Arrow. Labels may be placed

on all three components.

A

f

g

B

\diagram

A\rtwocell^f_g &B\\

\enddiagram

A

f

�

h

�

g

B

\diagram

A\ruppertwocell^f{\alpha}

\rlowertwocell_h{\beta}

\rto_(.35)g & B\\

\enddiagram

These categorical diagrams frequently having a

matrix-like layout, as with commutative diagrams. To

facilitate this there are control sequences of the form:

\rtwocell , \ultwocell , \xtwocell , : : : analogous

to the names de�ned in xyv2 for use in diagrams pro-

duced using xymatrix. As this involves the de�ni-

tion of 21 new control sequences, many of which may

never be used, these are not de�ned immediately upon

loading xy2cell. Instead the user must �rst specify

\UseTwocells.

As in the second example above, just the upper or

lower curved arrow may be set using control sequences

of the form \..uppertwocell and \..lowertwocell.

These together with the \..compositemap family, in

which two abutting arrows are set with an empty object

at the join, allow for the construction of complicated

\pasting diagrams" (see �gure 14 for an example).

The following initialise the families of control se-

quences for use in matrix diagrams.

\UseTwocells two curves

\UseHalfTwocells one curve

\UseCompositeMaps 2 arrows, end-to-end

\UseAllTwocells (all the above)

Alternatively 2-cells can be set directly inX

Y

-pictures

without using the matrix feature. In this case the above

commands are not needed. This is described in x17.5.

Furthermore a new directional \dir{=>} can be used

to place an \Arrow" anywhere in a picture, after the

direction has been established appropriately. It is used

with all of the 2-cell types.

Labels are placed labels on the upper and lower ar-

rows, more correctly `anti-clockwise' and `clockwise',

using ^ and _. These are entirely optional with the

following token, or grouping, giving the contents of the

label. When used with \..compositemap the ^ and _

specify labels for the �rst and second arrows, respec-

tively.

Normally the label is balanced text, set in T

E

X's

math mode, with \twocellstyle setting the style.

The default de�nition is given by : : :

\def\twocellstyle{\scriptstyle}

This can be altered using \def in versions of T

E

X or

\redefine in L

A

T

E

X. However labels are not restricted

to being simply text boxes. Any e�ect obtainable using

the X

Y

-pic kernel language can be set within an \xybox

and used as a label.

The position of a label can be altered by nudging

(see below). Although it is possible to specify multiple

labels, only the last usage of each of ^ and _ is actually

set, previous speci�cations being ignored.

Similarly a label for the central Arrow must be given,

after the other labels, by enclosing it within braces

{...}. An empty group {} gives an empty label; this

is necessary to avoid misinterpretation of subsequent

tokens.

17.2 Standard Options

The orientation of the central Arrow may be reversed,

turned into an equality, or omitted altogether. In each

case a label may still be speci�ed, so in e�ect the Arrow

may be replaced by anything at all.

These e�ects are speci�ed by the �rst token in the

central label, which thus has the form: {htokilabel}

where htoki may be one of : : :

30

f

3

f

4

f

5

A

f

1

f

2

g

1

f

6

g

4

f

7

f

8

B

g

2

g

3

Figure 14: Pasting diagram.

_ Arrow points clockwise

^ Arrow points anti-clockwise

= no tip, denotes equality

\omit no Arrow at all.

When none of these occurs then the default of _ is

assumed. If the label itself starts with one of these

characters then specify _ explicitly, or enclose the label

within a group {...}. See Extra Options 1, for more

values of htoki.

17.3 Nudging

Positions of all labels may be adjusted, as can the

amount of curvature for the curved arrows. The way

this is done is by specifying a \nudge" factor hnumi at

the beginning of the label. Here hnumi is a number

which speci�es the actual position of the label in units

of \xydashl@ (the length of a single dash, normally

5pt) except with \..compositemap, see below. Move-

ment is constrained to the perpendicular bisector of the

line cp. When nudging the label for the central Arrow

it is the whole Arrow which is moved, along with its

label.

Curvature of the arrows themselves is altered by

a nudge of the form \..twocellhnumi.... The sep-

aration of the arrows, along the bisector, is set to

be hnumi\xydashl@. When hnumi is zero, that is

\..twocell<0>..., the result is a single straight ar-

row, its mid-point being the origin for nudging labels.

A negative value for hnumi is also acceptable; but check

the orientation on the Arrow and which of ^ and _ cor-

respond to which component.

The origin for nudging labels is where the arrow

crosses the bisector. Positive nudges move the label

outwards while negative nudges move towards pc and

possibly beyond. The default position of a label is on

the outside, with edge at the origin.

The origin for nudging the Arrow is at the midpoint

of pc. A positive nudge moves in the clockwise direc-

tion. This will be the direction of the arrowhead, unless

it has been reversed using ^.

Labels on a \..compositemap are placed relative to

the midpoint of the component arrows. Nudges are in

units of 1pt. Movement is in the usualX

Y

-pic above and

below directions, such that a positive nudge is always

outside the triangle formed by the arrows and line pc.

The special nudge value <\omit> typesets just the

Arrow, omitting the curved arrows entirely. When used

with labels, the nudge value <\omit> causes the follow-

ing label to be ignored.

Exercise 29: Give code to typeset �gure 14.

Such code is relatively straight-forward, using \nudg-

ing" and \omit to help position the arrows, curves and

Arrows. It also uses an excursion, as described below

in the subsection Extra Options 3.

17.4 Extra Options

The following features are useful in non-mathematical

applications.

1. no Arrow

This is determined by special values for htoki as the

�rst (or only) character in the central label, as in the

above description of the standard options.

' arrowheads pointing clockwise;

` arrowheads pointing anti-clockwise;

" arrow tips on both ends;

! no tips at all.

The central Arrow is omitted, leaving symmetrically

placed curved connections with arrowheads at the spec-

i�ed ends. A label can be placed where the Arrow

would have been.

If a special arrowhead is speci�ed using ~'{..} (see

Extra Options 2, below) then this will be used instead

of the standard \dir{>}.

Clouds

precipitation

evaporation

H

2

O

Oceans

31

Syntax Action

htwocelli �! h2-cellihoptionsihArrowi typeset h2-celli with the hoptionsi and hArrowi

h2-celli �! \..twocell typeset two curved arrows

j \..uppertwocell typeset upper curved arrow only

j \..lowertwocell typeset lower curved arrow only

j \..compositemap use consecutive straight arrows

hArrowi �! {htokihtexti} speci�es orientation and label

j {hnudgeihtexti} adjust position, use default orientation

j {htexti} use default position and orientation

htoki �! ^ j _ j = oriented anti-/clockwise/equality

j \omit no Arrow, default is clockwise

j ` j ' j " j ! no Arrow; tips on two curved arrows as:

anti-/clockwise/double-headed/none

hoptionsi �! hoptionihoptionsi list of optional modi�cations

hoptioni �! hemptyi use defaults

j ^ hlabeli place hlabeli on the upper arrow

j _ hlabeli place hlabeli on the lower arrow

j hnudgei set the curvature, based on hnudgei value

j \omit do not set the curved arrows

j ! place \modmapobject midway along arrows

j ~ hwhati { hobjecti } use hobjecti in place speci�ed by hwhati

hwhati �! hemptyi set curves using the speci�ed hobjecti

j ^ j _ use hobjecti with upper/lower curve

j ` j ' use hobjecti for arrow head/tail

hlabeli �! htexti j hnudgei htexti set htexti displaced by hnudgei

hnudgei �! <hnumberi> positions object along a �xed axis

j <\omit> do not typeset the object

Figure 15: htwocellis

32

\xymatrixcolsep{5pc}

\diagram

\relax\txt{Clouds }\rtwocell<10>

_{\hbox{\tiny evaporation }}

^{\hbox{\tiny precipitation }}

{'{\boldmath{H_2 O}}}

&\relax\txt{Oceans}\\

\enddiagram

Mathematics

theory

experiment

Physics

\xymatrixcolsep{5pc}

\diagram

\relax\txt{\llap{Math}ematics }\rtwocell

_{\hbox{\tiny experiment }}

^{\hbox{\tiny theory }}{"}

& \relax\txt{Physics} \\

\enddiagram

2. Changing Tips and Module Maps

The following commands are provided for specifying

the hobjecti to be used when typesetting various parts

of the twocells.

command default

\modmapobject{hobjecti} \dir{j}

\twocellhead{hobjecti} \dir{>}

\twocelltail{hobjecti} \dir{}

arrowobject{hobjecti} \dir{=>}

\curveobject{hobjecti}

\uppercurveobject{hobjecti} {}

\lowercurveobject{hobjecti} {}

These commands set the object to be used for all

subsequent 2-cells at the same level of T

E

X grouping.

\curveobject speci�es both of the upper- and lower-

curve objects. For some of these there is also a way

to change the object for the current 2-cell only. This

requires a ~-hoptioni which is described below, except

for the \..curveobject types, which are discussed in

Extra Options 4.

These e�ects are speci�ed by placing options after

the

\..twocell control sequence, e.g. \rtwocelloptions

labels: : : . Each option is either a single token htoki,

or a ~htoki with a single argument: ~htoki{arg}. Pos-

sibilities are listed in the following table, in which {..}

denotes the need for an argument.

\omit no arrows, Arrow and label only;

! place module-map indicator;

~'{..} change arrow-head to {..};

~`{..} place/change tail on arrow(s);

~{..} change object used to set curves;

~^{..} use object {..} to set upper curve;

~_{..} use object {..} to set lower curve;

Here we discuss the use of !, ~', ~` and \omit. The

description of ~^, ~_ and ~{..} is given in Extra Op-

tions 4.

The default module map indicator places a single

dash crossing the arrow at right-angles, located roughly

midway along the actual printed portion of the arrow,

whether curved or straight. This takes into account the

sizes of the objects being connected, thereby giving an

aesthetic result when these sizes di�er markedly. This

also works with \..compositemap where an indicator

is placed on each arrow. The actual object can be

changed using \modmapobject.

Any of the standard X

Y

-pic tips may be used for

arrow-heads. This is done using ~'{..}, for example

~'{\dir{>>}} gives double-headed arrows. Similarly

~`{..} can be used to place an arrow-tail. Normally

the arrow-tail is , so is not placed; but if a non-empty

tail has been speci�ed then it will be placed, using

\drop. No guarantee is o�ered for the desired result

being obtained when an arrow-tail is mixed with the

features of Extra Options 1.

P

M

M

0

f

S

\modmapobject{\objectbox{\otimes}}

\xymatrixcolsep{5pc}

\diagram

P\rtwocell~!~'{\dir{>>}}~`{\dir{|}}

^{<1.5>M}_{<1.5>M'}{=f} & S \\

\enddiagram

3. Excursions

The syntax for the \x..twocell types and for

\xcompositemap is a little di�erent to what might be

expected from that for \xto, \xline, etc. For example,

\xtwocell[hhopi]{hdisplacei}...

connects to the hposi displaced by hdisplacei from the

relative cell location speci�ed by hhopi. The displace-

ment can be any string of valid X

Y

-pic commands, but

they must be enclosed within a group {...}. When

the cell location is required, a null grouping {} must

be given.

33

When used with the <\omit> nudge, such excursions

allow a labelled Arrow to be placed anywhere within an

X

Y

-pic diagram; furthermore the Arrow can be oriented

to point in any direction.

4. Fancy curves

By specifying \curveobject an arbitrary object may

be used to construct the curved arrows. Indeed with a

\..twocell di�erent objects can be used with the up-

per and lower curves by specifying \uppercurveobject

and \lowercurveobject.

These speci�cations apply to all 2-cells subsequently

constructed at the same level of T

E

X grouping. Alter-

natively using a ~-option, as in Extra Options 2, allows

such a speci�cation for a single 2-cell or curved part.

Objects used to construct curves can be of two types.

Either a single hobjecti is set once, with copies placed

along the curve. Alternatively a directional object can

be aligned with the tangent along the curve. In this

case use a speci�cation takes the form:

\curveobject{hspaceri~**hobjecti}.

Here hspaceri may be any hobjecti of non-zero size.

Typically it is empty space, e.g. +hdimeni{}.

Exercise 30: Give code to typeset the following di-

agrams.

FUn

?

?

?

?

?

?
?
?

?

?

?

?

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

& gaMES

Ground

State

continuous power

pulsed emission

NiCd

Excited

State

17.5 2-cells in general X

Y

-pictures

Two-cells can also be set directly within anyX

Y

-picture,

without the matrix feature, using either \drop or

\connect.

\def\myPOS#1{\POS}\def\goVia#1{%

\afterPOS{\connect#1\myPOS}}

\xy

+{A}="A",+<1cm,1.5cm>+{B}="B",

+<2.0cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";\goVia{\uppertwocell^\alpha{}}"B"{}

;\goVia{\twocell^\zeta_\xi{\gamma}}"C"{}

;\goVia{\compositemap{}}"D"{},

"A";\goVia{\lowertwocell{}}"D"{}

\endxy

A

B C

D

�

�

�

The code shown is a compact way to place a chain

of 2-cells within a picture. It illustrates a standard

technique for using \afterPOS to �nd a hposi to be

used for part of a picture, then subsequently reuse it.

Also it is possible to use \drop or hdecoris to specify

the 2-cells, giving the same picture.

\xy *+{A}="A",+<1cm,1.5cm>*+{B}="B",

+<2cm,0pt>*+{C}="C",

+<1cm,-1.5cm>*+{D}="D",

"A";"B"\uppertwocell^\alpha{}

\POS"B";"C"

\twocell^\zeta_\xi{\gamma}\POS"C";

\afterPOS{\drop\compositemap{}}"D"

{}\POS "A";

\afterPOS{\drop\lowertwocell{}}"D"

\endxy

The \connect variant is usually preferable as this

maintains the size of the object at c, while the \drop

variant leaves a rectangular object having p and c on

opposite sides.

18 Matrix feature

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{matrix}

This option implements \X

Y

-matrices", i.e., matrices

where it is possible to refer to the entry objects by

their row/column address. We �rst describe the gen-

eral form ofX

Y

-matrices in x18.1, then in x18.2 we sum-

marise the new hcoordiinate forms used to refer to en-

tries. In x18.3 we explain what parameters can be set

to change the spacing and orientation of the matrix,

and in x18.4 we explain how the appearance of the en-

tries can be changed.

18.1 X

Y

-matrices

The fundamental command of this feature is the com-

mand \xymatrix{: : :} that reads a matrix of entries in

the generic T

E

X row&column format, i.e., where rows

are separated with \\ and contain columns separated

with &. Thus a matrix with maxrow rows and maxcol

34

columns where each entry contains row,col is entered

as

\xymatrix{

1,1 & 1,2 & � � � 1,maxcol \\

2,1 & 2,2 & 2,maxcol \\

.

.

.

.

.

.

maxrow,1 & maxrow,2 & maxrow,maxcol }

(T

E

Xnically the & character represents any `alignment

tab', i.e., character with category code 4).

A hmatrixi can appear either in an X

Y

-picture (as

hdecori) or \stand-alone".

The points where \xymatrix is di�erent from

ordinary matrix constructions (like plain T

E

X's

\matrix{: : :} and L

A

T

E

X's array environment) are

� arbitrary X

Y

-pic hdecoriations may be speci�ed in

each entry and will be interpreted in a state where

c is the current entry,

� the entire matrix is an object itself with reference

point as the top left entry, and

� a progress message \<xymatrix rowsxcols size>"

is printed for each matrix with rows � cols entries

and X

Y

-pic complexity size (the number of primi-

tive operations performed).

� Entries starting with a * are special (described

in x18.4)

6

, so use {*} to get a *.

For example,

$$\xy

\xymatrix{A&B\\C&D}

\drop\frm{-}

\drop\cir<8pt>{}

\endxy$$

will typeset

A B

C D

In fact entries of one matrix may refer to entries of

another by using the hposi save mechanism:

A B

C D

A

0

B

0

C

0

D

0

was typeset (using the `frame' extension) by

$$\xy

6

In general it is recommended that entries start with a non-

expanding token, i.e., an ordinary (non-active) character, {, or

\relax.

\xymatrix {

A\POS="A" & B\POS="B" \\

C\POS="C" & D\POS="D" }

\POS*\frm{--}

\POS-(10,3)

\xymatrix {

A'\POS;"A"**\dir{.}

& B'\POS;"B"**\dir{.} \\

C'\POS;"C"**\dir{.}

& D'\POS;"D"**\dir{.} }

\POS*\frm{--}

\endxy$$

Bug: Matrices cannot be nested.

18.2 New coordinate formats

it is possible within entries to refer to all the entries of

the X

Y

-matrix using the following special hcoordiinate

forms:

"r,c" Position and extents of en-

try in row r, column c (top

left is "1,1")

[�r,�c] �r rows below and �c

columns right of current en-

try

[hhopi*] entry reached by the

hhopis; each hhopi is one of

dulr describing one `move'

to a neighbor entry

So the current entry has the synonyms [0,0], [], [rl],

[ud], [dudu], etc.

These forms are useful for de�ning diagrams where

the entries are related, e.g.,

A

B C

was typeset by

$$\xy

\xymatrix{

A \POS[];[d]**\dir{~},

[];[dr]**\dir{-} \\

B & C \POS[];[l]**\dir{.} }

\endxy$$

If an entry outside the X

Y

-matrix is referenced then

an error is reported.

18.3 Spacing and rotation

The default spacing distances between rows and

columns are called rowsep and colsep. They can be

35

changed from the default 2pc by two special commands

similar to the ones for the defaults in the kernel:

\xymatrixrowsep hadd opi {hdimeni}

\xymatrixcolsep hadd opi {hdimeni}

The spacing around each object can also be changed

through modi�ers as explained in the following section.

An entire matrix can be rotated by adding a rota-

tion pre�x between the \xymatrix command and the

opening {:

@hdirectioni

This will set the orientation of the rows to hdirectioni

(the default corresponds to @r).

Note: Rotation is experimental and the spacing of

a rotated matrix may change in future versions.

Exercise 31: How did the author typeset the follow-

ing matrix?

A

B

C

D

Hint : It is a 2 � 2 matrix and the author

used \entrymodifiers = {[o]} and \everyentry =

{\drop\cir{}} as explained in the next section.

18.4 Entries

The object hmodi�eris used for the default entries can

be changed from the default `!C +=<objectwidth, ob-

jectheight> +<2 � objectmargin>' (with the e�ect of

centering the object, forcing it to have at least the size

objectwidth times objectheight and �nally add the ob-

jectmargin) to all sides, by

\entrymodifiers={ hstu�i }

The appearance of a single entry can be modi�ed by

entering it as

* hobjecti hdecori

This makes the particular entry ignore the entry mod-

i�ers and typeset as a kernel object with the same ref-

erence point as the (center of) the default object would

have had.

Exercise 32: Typeset the following diagram:

A �B

=A

=B

B

�A

A

B�

B � A

Finally, \everyentry is used to setup hdecori that

should be inserted before everything else in each entry.

Initially it is empty but

\everyentry={ hdecori }

will insert hdecori �rst in each entry. For example,

\everyentry={\drop\cir{}}

\xy\xymatrix{

A \POS[];[r]**\dir{~} & B

}\endxy

will typeset

A B

Exercise 33: How did the author typeset the follow-

ing diagram?

:

root

�

�

1

Hints: The arrow feature was used to make the bending

arrows and the frame extension for the frames around

each cell.

19 Graph Combinator feature

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{graph}

This option implements `X

Y

-graph', a special combina-

toric drawing language suitable for diagrams like
ow

charts, directed graphs, and various forms of trees. The

base of the language is reminiscent of the PIC [4] lan-

guage because it uses a notion of the `current location'

and is based on `moves'. But the central construction

is a `map' combinator that is borrowed from functional

programming.

X

Y

-graph make use of facilities of the `arrow' feature

option which is therefore required.

Figure 16 summarises the syntax of a hgraphi with

notes below. A hgraphi can appear either in an X

Y

-

picture (as hdecori) or \stand-alone".

Notes

19a. A move is to establish a new current node.

36

Syntax Action

\xygraph{hgraphi} typeset hgraphi

hgraphi �! hstepi* interpret hstepis in sequence

hstepi �! hnodei move

19a

to the hnodei

j - hnodei hlabelsi draw

19b

line to hnodei, with hlabelsi

j :harrowi hnodei hlabelsi draw

19b

harrowi to hnodei, with hlabelsi

j (hlisti) map

19c

current node over hlisti

hnodei �! [hmovei] new node hmoveid relative to current

j "hidi" previously saved

19d

node

j ? currently mapped

19c

node

j ! hescapei interpret material in another mode

j hnodei hiti hnodei with hiti typeset and saved

19d

there

j hnodei = "hidi" hnodei saved

19d

as "hidi"

hmovei �! hhopi* hhopis

19e

(dulr) from current node

hlisti �! hgraphi , hlisti j hgraphi list of subgraphs

19c

hescapei �! { hposi hdecori } perform hposi hdecori

19f

j M hmatrixi insert hmatrixi

19g

j P hmatrixi insert hpolygoni

19i

Figure 16: hgraphis

19b. To draw something is simply to draw a line or the

speci�ed harrowi from the current node to the spec-

i�ed target node. The target then becomes the cur-

rent node. All the features of arrows as described

in x16 can be used, in particular arrows can be

labelled and segmented, but with the change that

hpath-posi means hnodei as explained in note x16e.

19c. To map over a list is simply to save the current

node and then interpret the hlisti with the follow-

ing convention:

� Start each element of the list with the cur-

rent node as saved and p as the previous list

element, and

� let the ? hnodei refer to the saved current

node explicitly.

19d. Typeset hiti and make it the current node. Also

saves hiti for later reference using "hidi": if hiti is

a simple letter, or digit, then just as "hiti"; if hiti

is of the form {text} or *: : :{text} then as "text".

With the = addition it is possible to save explicitly

in case several nodes have the same text or a node

has a text that it is impractical to use for reference.

Exercise 34: How did the author typeset this?

A A A

19e. Moving by a series of hops is simply mov-

ing in a grid as the sequence of dulr (for

down/up/left/right) indicates. The grid is a stan-

dard cartesian coordinate system with 3pc unit

unless a base "graphbase" is de�ned or the cur-

rent base is rede�ned using ! with an appropriate

hposiition using : and :: as described in note 3d.

To Do: Many more moves should be allowed, in

particular these should be available: (1) `until per-

pendicular to : : : ' and (2) `until intercepts with

: : : '.

19f. This `escapes' into the X

Y

-pic kernel language and

interprets the hposi hdecori. The current node is

then set to the resulting c object and the grid from

the resulting base.

The e�ect of the hposi hdecori can be com-

pletely hidden from X

Y

-graph by entering it as

{\save: : :\restore}.

19g. Note: This only works when the `matrix' feature

has also been loaded. It inserts a node consisting

37

of the hmatrixi which must have the usual form

(see x18 for the details):

hrotationi { hrows and columnsi }

Within the matrix the following two control se-

quences are specially de�ned: \: is de�ned as an

alias for \ar and \="hidi" will save the entry as

"hidi" (\everyentry is used for these).

Finally the grid is set as the top left `square' of the

matrix, i.e., with [d] and [r] adjusted as they

work in the top left entry (so [dr] immediately

after the matrix will work as expected, e.g., make

the center of "2,2" the current node, but others

might not, e.g., [rr] will not necessarily place the

current node on top of "1,3".

19h. Note: This only works when the `polygon' fea-

ture has also been loaded. It inserts a node con-

sisting of the hpolygoni which must have the usual

form (see x20 for the details).

19i. It is possible to insert a hpolygoni in a graph pro-

vided the poly option described in x20 has been

loaded: it will have its center on top of the current

node and default radius as the hhopi base size.

The canonical diagram example illustrates most of

the above:

\xygraph{

!M{ X \times_Z Y \="xy" \:[r]_p \:[d]^q

& X \="X" \:[d]_f \\

Y \="Y" \:[r]^g & Z }

[ul]U (? :@/^.5pc/ ^x "X" ,

? :@{-->} |-{(x,y)} "xy" ,

? :@/_.5pc/ _y "Y") }

typesets

X �

Z

Y

p

q

X

f

Y

g

Z

U

x

(x;y)

y

20 Polygon feature

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{poly}

This feature provides a means for specifying the lo-

cations of vertices for regular polygons, with 3 to 12

sides. Polygons can be easily drawn and/or the vertex

positions used to constuct complex graphics within an

X

Y

-picture. Many non-regular polygons can be speci-

�ed by setting a non-square basis.

A polygon is most easily speci�ed using : : :

\xypolygonhnumberi{} with hnumberi sides;

\xypolygonhnumberi{htoki} htoki at vertices;

\xypolygonhnumberi{hobjecti}

with a general hobjecti at each vertex;

Here hnumberi is a sequence of digits, giving the num-

ber of sides. If used within an \xy: : :\endxy environ-

ment then the polygon will be centred on c, the current

hposi. However an \xypolygon can be used outside

such an environment, as \stand-alone" polygon; the

whole picture must be speci�ed within the \xypolygon

command.

In either case the shape is obtained by spacing ver-

tices equally around the \unit circle" with respect to

the current basis. If this basis is non-square then the

vertices will lie on an ellipse. Normally the polygon,

with at most 12 vertices, is oriented so as to have a

at base when speci�ed using a standard square basis.

With more than 12 vertices the orientation is such that

the line from the centre to the �rst vertex is horizon-

tal, pointing to the right. Any other desired orientation

can be obtained, with any number of vertices, by using

the ~={: : :} as described below.

The general form for \xypolygon is : : :

\xypolygonhnumberi"hpre�xi"{hswitchesi: : : }

where the "hpre�xi" and hswitchesi are optional. Their

uses will be described shortly.

A \xypolygon establishes positions for the vertices

of a polygon. At the same time various things may

be typeset, according to the speci�ed hswitchesi. An

hobjecti may be dropped at each vertex, \spokes"

drawn to the centre and successive vertices may be con-

nected as the polygon's \sides". Labels and breaks can

be speci�ed along the spokes and sides.

Each vertex is automatically named: "1", "2", : : : ,

"hnumberi" with "0" as centre. When a hpre�xi has

been given, names "hpre�xi0", : : : , "hpre�xihnumberi"

are used instead. While the polygon is being con-

structed the macro \xypolynum expands to the number

of sides, while \xypolynode expands to the number of

each vertex, spoke and side at the time it is processed.

This occurs in the following order: vertex 1, spoke 1,

vertex 2, spoke 2, side 1, vertex 3, spoke 3, side 2, : : : ,

vertex n, spoke n, side n�1, side n where the �nal side

joins the last vertex to the �rst.

The macro \xypolyname holds the name of the poly-

gon, which is hpre�xi if supplied. In this case the value

of \xypolynum is also stored as \hpre�xiNUMSIDES, ac-

cessible outside the polygon.

As stated above, a polygon with up to 12 vertices

is oriented so as to have a
at base, when drawn us-

ing a standard square basis. Its vertices are numbered

38

in anti-clockwise order, commencing with the one at

horizontal-right of centre, or the smallest angle above

this (see example below). With more than 12 vertices

then vertex "1" is located on the horizontal, extending

to the right from centre (assuming a standard square

basis). By providing a switch of the form ~={hanglei}

then the vertex "1" will be located on the unit circle

at hanglei

�

anti-clockwise from \horizontal" | more

correctly, from the X-direction in the basis to be used

when setting the polygon, which may be established

using a ~:{: : :} switch.

�

� �

1

2 3

0 1

23

4

5 6

0

1

2

3

4

5

6

7 8

9

Exercise 35: Give code to typeset these.

One important use of hpre�xi is to allow the vertices

of more than one polygon to be accessed subsequently

within the same picture. Here are some examples of

this, incorporating the ~:{: : :} switch to perform sim-

ple rescalings. Firstly the edges of a dodecahedron as

a planar graph:

\xy /l1.5pc/:,{\xypolygon5"A"{}},

{\xypolygon5"B"{~:{(1.875,0):}~>{}}},

{\xypolygon5"C"{~:{(-2.95,0):}~>{}}},

{\xypolygon5"D"{~:{(-3.75,0):}}},

{"A1"\PATH~/{**\dir{-}}'"B1"'"C4"'"B2"},

{"A2"\PATH~/{**\dir{-}}'"B2"'"C5"'"B3"},

{"A3"\PATH~/{**\dir{-}}'"B3"'"C1"'"B4"},

{"A4"\PATH~/{**\dir{-}}'"B4"'"C2"'"B5"},

{"A5"\PATH~/{**\dir{-}}'"B5"'"C3"'"B1"},

"C1";"D1"**\dir{-},"C2";"D2"**\dir{-},

"C3";"D3"**\dir{-},"C4";"D4"**\dir{-},

"C5";"D5"**\dir{-} \endxy

Next a hexagonal pyramid, a rectangular box and an

octahedral crystal speci�ed as a triangular anti-prism.

Notice how the ~:{: : :} switch is used to create non-

square bases, allowing the illusion of 3D-perspective in

the resulting diagrams:

\xy/r2pc/: ="A", +(.2,1.5)="B","A",

{\xypolygon6{~:{(1,-.1):(0,.33)::}

~<>{;"B"**\dir{-}}}}\endxy

\quad \xy /r2pc/:

{\xypolygon4"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon4"B"{~:{(.8,0):(0,.75)::}}},

"A1";"B1"**\dir{.},"A2";"B2"**\dir{.},

"A3";"B3"**\dir{.},"A4";"B4"**\dir{.}

\endxy\quad \xy /r2pc/:

{\xypolygon3"A"{~:{(0,.7)::}}},+(.7,1.1),

{\xypolygon3"B"{~:{(-.85,0):(-.15,.8)::}}}

,"A1"\PATH~/{**\dir{.}}'"B2"'"A3"'"B1"

'"A2"'"B3"'"A1" \endxy

Vertex object: Unless the �rst character is ~, signi-

fying a \switch", then the whole of the braced material

is taken as specifying the hobjecti for each vertex. It

will be typeset with a circular edge using \drop[o]...,

except when there is just a single token htoki. In this

case it is dropped as \drop=0{htoki}, having zero size.

An object can also be dropped at each vertex using the

switch ~*{: : :}, in which case it will be circular, with

the current objectmargin applied.

The next example illustrates three di�erent ways of

specifying a \circ at the vertices.

�

�

��

�

�

�

�

� �

�

�

�

�

��

�

�

�

� �

�

�

��

�

�

� �

�

\xy/r2pc/: {\xypolygon12{\circ}},

+/r5pc/,{\xypolygon10{~<{-}~>{}{\circ}}},

+/r5pc/,{\xypolygon8{~*{\circ}~<=}}\endxy

Switches

The allowable switches are given in the following table:

~:{: : :} useful for rescaling.

~*{hobjecti} hobjecti at each vertex.

~={hanglei} align �rst vertex.

~<{: : :} directional for \spokes";

~<<{harrowi} use harrowi for spokes;

~<>{: : :} labels & breaks on spokes.

~>{: : :} directional for \sides";

~><{harrowi} use harrowi for sides;

~>>{: : :} labels & breaks on sides.

39

Using ~<<{harrowi} or ~><{harrowi} is most ap-

propriate when arrowheads are required on the sides

or spokes, or when labels/breaks are required. Here

harrowi is as in �gure 13, so it can be used simply to

specify the style of directional to be used. Thus ~<<{}

sets each spoke as a default arrow, pointing outwards

from the centre; ~<<{@{-}} suppresses the arrowhead,

while ~><{@{}} uses an empty arrow along the sides.

Labels and breaks are speci�ed with ~<>{: : :} and

~>>{: : :}, where the {: : :} use the notation for a

hlabeli, as in �gure 12.

When no tips or breaks are required then the

switches ~<{: : :} and ~>{: : :} are somewhat faster,

since less processing is needed. Labels can still be spec-

i�ed with ~<>{: : :} and ~>>{: : :}, but now using the

kernel's hplacei notation of �gure 1. In fact any ker-

nel code can be included using these switches. With

~<> the current p and c are the centre and vertex re-

spectively, while for ~>> they are the current vertex

and the previous vertex. (The connection from vertex

"hnumberi" to vertex "1" is done last.) The pyramid

above is an example of how this can be used. Both

~<{: : :} and ~<<{harrowi} can be speci�ed together,

but only the last will actually be used; similarly for

~>{: : :} and ~><{harrowi}.

A

B

�

1

C

�

2

D

�

3

E

�

4

F

�

5

G

�

6

�

7

\def\alphanum{\ifcase\xypolynode\or A

\or B\or C\or D\or E\or F\or G\or H\fi}

\xy/r3pc/: {\xypolygon3{~={40}}},

{\xypolygon4{~={40}~>{{--}}}},

{\xypolygon5{~={40}}},

{\xypolygon6{~={40}~>{{--}}}},

{\xypolygon11{~={40}}},

{\xypolygon50{~={40}~>.}}, +/r8pc/,

{\xypolygon7{~<<{@{-}}~><{}

~<>{|*\dir{x}}~*{\alphanum}

~>>{_{\alpha_\xypolynode^{}}}}}

\endxy

Use of the ~={: : :} switch was described earlier.

When using the ~:{: : :} more can be done than just

setting the base. In fact any kernel code can be sup-

plied here. It is processed prior to any other part of

the polygon. The graphics state has c at the centre of

the polygon, p at the origin of coordinates within the

picture and has basis unchanged from what has pre-

viously been established. The current point c will be

reset to the centre following any code interpreted using

this switch.

A further simpli�cation exists for sides and spokes

without harrowis. If htoki is a single character then

~>htoki, ~>{htoki}, ~>{{htoki}} all specify the direc-

tional \dir{htoki}; similarly with the ~< switch. On

the other hand, compound directionals require all the

braces, e.g. ~>{{--}} and ~>{2{.}}.

After all switches have been processed, remaining

tokens are used to specify the hobjecti for each vertex.

Such tokens will be used directly after a \drop, so can

include object hmodi�eris as in �gure 3. If an hobjecti

has already been speci�ed, using the ~* switch, then

the following message will be written to the T

E

X log:

XY-pic Warning: vertex already specified,

discarding unused tokens:

with tokens at the end indicating what remains unpro-

cessed. Similarly extra tokens before the {: : :} gener-

ate a message:

XY-pic Warning: discarding unused tokens:

Nested Polygons

When \xypolygon is speci�ed within a ~<>{: : :}

or ~>>{: : :} switch for another polygon, then the

inner polygon inherits a name which incorporates

the number of the part on which it occurs, as

given by xypolynode. This name is accessed using

\xypolyname. In the following example the inner poly-

gon is placed using ~<> in order to easily adjust its

orientation to the outward direction of the spokes.

1

1; 1

1; 2

1; 3

1; 4

2

2; 1

2; 2

2; 3

2; 4

3

3; 1

3; 2

3; 3

3; 4

4

4; 1

4; 2

4; 3

4; 4

\xypolygon4{~:{/r6pc/:}

~<>{*\frm<10pt>{o}\xypolygon4{~:{/-2.5pc/:}

~*{\xypolyname\xypolynode}}}

[o]=<7pc>{\xypolynode}}

Notice how nested polygons inherit names "1,1",

"1,2", : : : , "4,1", : : : , "4,4" for their vertices. If

40

a hpre�xi is supplied at the outermost level then the

names become: "hpre�xii; j". Specifying a hpre�xi for

the inner polygon overrides this naming scheme. The

same names may then be repeated for each of the inner

polygons, allowing access afterwards only to the last|

possibly useful as a memory saving feature when the

vertices are not required subsequently.

Four levels of nesting gives a quite acceptable \Sier-

pinski gasket". The innermost triangle is provided by

\blacktriangle from the A

M

S symbol font msam5, at

5-point size. Further levels can be achieved using the

PostScript backend, otherwise line segments become

too small to be rendered using X

Y

-fonts.

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

N

NN

\def\objectstyle{\scriptscriptstyle}

\xypolygon3{~:{/r5.2pc/:}

~>{}~<>{?\xypolygon3"a"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"b"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"c"{~:{(.5,0):}

~>{}~<>{?\xypolygon3"d"{~:{(.5,0):}

~<>{?*!/d.5pt/=0{\blacktriangle}}

}} }} }} }} }

Note the use of naming in this example; when process-

ing this manual it saves 13,000+ words of main mem-

ory and 10,000+ string characters as well as 122 strings

and 319 multi-letter control sequences.

21 Version 2 Compatibility fea-

ture

Vers. 2.12 by Kristo�er H. Rose hkris@diku.dki

Load as: \xyoption{v2}

This option provides backwards compatibility with

X

Y

-pic version 2: diagrams written according to the

\Typesetting diagrams with X

Y

-pic: User's Man-

ual" [13] should typeset correctly with this option

loaded

There are a few exceptions: the features described

in x21.1 below are not provided because they are not

as useful as the author originally thought and thus vir-

tually never used. And one extra command is provided

to speed up typesetting of documents with X

Y

-pic ver-

sion 2 diagrams by allowing the new compilation func-

tionality on old diagrams.

The remaining sections list all the obsolete com-

mands and suggest ways to achieve the same things

using X

Y

-pic 2.12, i.e., without the use of this option.

They are grouped as to what part of X

Y

-pic replaces

them; the compilation command is described last.

Note: \version 2" is meant to cover all public re-

leases of X

Y

-pic in 1991 and 1992, i.e., version 1.40

and versions 2.1 through 2.6. The published manual

cited above (for version 2.6) is the reference in case

of variations between these versions, and only things

documented in that manual will be supported by this

option!

21.1 Unsupported incompatibilities

Here is a list of known incompatibilities with version 2

even when the v2 option is loaded.

� Automatic `shortening' of arrow tails by |<< break

was a bug and has been `�xed' so it does not work

any more. Put a |<\hole break before it.

� The version 2.6 * position operator is not avail-

able. Use the : and :: operators.

� Using t

1

;t

2

:(x,y) as the target of an arrow com-

mand does not work. Enclose it in braces, i.e.,

write

{t

1

;t

2

:(x,y)}

� The older \pit, \apit, and \bpit commands are

not de�ned. Use \dir{>} (or \tip) with variants

and rotation.

� The even older notation where an argument in

braces to \rto and the others was automatically

taken to be a `tail' is not supported. Use the sup-

ported |<: : : notation.

If you do not use these features then your version 2

(and earlier) diagrams should typeset the same with

this option loaded except that sometimes the spacing

with version 2.12 is slightly di�erent from that of ver-

sion 2.6 which had some spacing bugs.

21.2 Obsolete kernel features

The following things are added to the kernel by this

option and described here: idioms, obsolete positions,

obsolete connections, and obsolete objects. For each

we show the suggested way of doing the same thing

without this option:

Removed A

M

S-T

E

X idioms

Some idioms from A

M

S-T

E

X are no longer used byX

Y

-

pic: the de�nition commands \define and \redefine,

and the size commands \dsize, \tsize, \ssize, and

\sssize. Please use the commands recommended for

41

your format|for plain T

E

X these are \def for the �rst

two and \displaystyle, \textstyle, \scriptstyle,

and \scriptscriptstyle for the rest. The v2 option

ensures that they are available anyway.

Version also 2 used the A

M

S-T

E

X \text and a (non-

object) box construction \Text which are emulated|

\text is only de�ned if not already de�ned, however,

using the native one (of A

M

S-T

E

X or A

M

S-L

A

T

E

X or

whatever) if possible. Please use the \txt object con-

struction directly since it is more general and much

more e�cient!

Obsolete state

In version 2 the available state dimensions had di�erent

names: \cL, \cR, \cH, and \cD for \Lc, \Rc, \Uc, and

\Dc. These are made synonyms for the new names.

Obsolete position manipulation

In version 2 many things were done using individual

hdecori control sequences that are now done using hposi

operators.

Version 2 positioning Replacement

\gohposi \POS;p,hposi

\aftergo{hdecori}hposi

\afterPOS{hdecori};p,hposi

\merge \POS.p\relax

\swap \POS;\relax

\Drop{htexti} \drop+{htexti}

Obsolete connections

These connections are now implemented using direc-

tionals.

Version 2 connection Replacement

\none \connect h\dir{}

\solid \connect h\dir{-}

\Solid \connect h\dir2{-}

\Ssolid \connect h\dir3{-}

\dashed \connect h\dir{--}

\Dashed \connect h\dir2{--}

\Ddashed \connect h\dir3{--}

\dotted \connect h\dir{.}

\Dotted \connect h\dir2{.}

\Ddotted \connect h\dir3{.}

\dottedwith{htexti} \connect h{htexti}

Note how the `hidden' speci�er h should be used be-

cause version 2 connections did not a�ect the size of

diagrams.

Obsolete tips

These objects all have \dir-names now:

Version 2 tip Replacement

\notip \dir{}

\stop \dir{|}

\astop \dir^{|}

\bstop \dir_{|}

\tip \dir{>}

\atip \dir^{>}

\btip \dir_{>}

\Tip \dir2{>}

\aTip \object=<5pt>:(32,-1)\dir^{>}

\bTip \object=<5pt>:(32,+1)\dir_{>}

\Ttip \dir3{>}

\ahook \dir^{(}

\bhook \dir_{(}

\aturn \dir^{'}

\bturn \dir_{'}

The older commands \pit, \apit, and \bpit, are

not provided.

Obsolete object constructions

The following object construction macros are made ob-

solete by the enriched hobjecti format:

Version 2 object Replacement

\rotate(hfactori)htipi

\object:(hfactori,hfactori){htipi}

\hole \object+{}

\squashhtipi \object=0{htipi}

\growhtipi \object+{htipi}

\grow<hdimeni>htipi \object+<hdimeni>{htipi}

\squarify{htexti} \object+={htexti}

\squarify<hdimeni>{htexti}

\object+=<hdimeni>{htexti}

where rotation is done in a slightly di�erent manner in

version 2.12 (it was never accurate in version 2).

21.3 Obsolete extensions & features

Version 2 had commutative diagram functionality cor-

responding to the frames extension and parts of the

matrix and arrow features. These are therefore loaded

and some extra de�nitions added to emulate commands

that have disappeared.

Frames

The version 2 frame commands are emulated us-

ing the frame extension (as well as the \dotframed,

42

\dashframed, and \rounddashframed commands

communicated to some users by electronic mail):

Version 2 object Replacement

\framed \drop\frm{-}

\framed<hdimeni> \drop\frm<hdimeni>{-}

\Framed \drop\frm{=}

\Framed<hdimeni> \drop\frm<hdimeni>{=}

\dotframed \drop\frm{.}

\dashframed \drop\frm{--}

\rounddashframed \drop\frm{o-}

Matrices

The \diagram hrowsi \enddiagram command is pro-

vided as an alias for \xy\xymatrix{ hrowsi }\endxy

centered in math mode and \LaTeXdiagrams changes

it to use \begin : : : \end syntax. v2 sets a special in-

ternal `old matrix'
ag such that trailing \\ are ignored

and entries starting with * are safe.

\NoisyDiagrams is ignored because the matrix fea-

ture always outputs progress messages.

Finally the version 2 \spreaddiagramrows and

\spreaddiagramcolumns spacing commands are emu-

lated using \xymatrixrowsep and \xymatrixcolsep:

Arrows

The main arrow commands of version 2 were the

\morphism and \definemorphism commands that

have been replaced by the \ar command.

v2 provides them as well as uses them to de�ne

the version 2 commands \xto, \xline, \xdashed,

\xdotted, \xdouble, and all the derived commands

\dto, \urto, : : : ; the \arrow commands of the �-

releases of v3 is also provided.

Instead of commands like \rrto and \uldouble you

should use the arrow feature replacements \ar[rr] and

\ar@{=}[ul].

The prede�ned turning solid arrows \lltou, : : : ,

\tord are de�ned as well; these are now easy to do

with hturnis.

21.4 Obsolete loading

The v2 User's Manual says that you can load X

Y

-pic

with the command \input xypic and as a L

A

T

E

X 2.09

`style option' [xypic]. This is made synonymous

with loading this option by the �les xypic.tex and

xypic.sty distributed with the v2 option.

xypic.tex: This �le (version 2.10) just loads the v2

feature.

xypic.sty: Loads xy.sty and the v2 feature.

21.5 Compiling v2-diagrams

In order to make it possible to use the new compilation

features even on documents written withX

Y

-pic v2, the

following command has been added:

\diagramcompileto{ hnamei } : : : \enddiagram

which is like the ordinary diagram command except

the result is compiled into a �le hnamei.xyc. Note

that compilation is not quite safe in all cases!

There is also the following command that switches

on automatic compilation of all diagrams created with

the v2 \diagram : : : \enddiagram command:

\CompileAllDiagrams { hpre�xi }

will apply \xycompileto{hpre�xin}{: : :} to each dia-

gram with n a sequence number starting from 1.

If for some reason a diagram does not work when

compiled then replace the \diagram command with

\diagramnocompile (or in case you are using the

L

A

T

E

X form, \begin{diagramnocompile}), or use

\NoCompileAllDiagrams

\ReCompileAllDiagrams

where the last switches compilation back on.

Part IV

Backends

This part describes variant backends that support cus-

tomisation of the produced DVI �les to particular out-

put devices. For each is indicated the described version

number, the author, and how it is loaded. Currently

there is only backend supporting output to Post-

Script devices.

22 PostScript backend

Vers. 2.12 by Ross Moore hross@mpce.mq.edu.aui

Load as: \xyoption{ps}

X

Y

-ps is a `back-end' which provides X

Y

-pic with the

ability to produce DVI �les that use PostScript

7

\specials for drawing rather than the X

Y

-pic fonts.

In particular this makes it possible to print X

Y

-pic

DVI �les on systems which do not have the ability to

load the special fonts. The penalty is that the gen-

erated DVI �les will only function with one particular

7

PostScript is a registered Trademark of Adobe Systems,

Inc.

43

DVI driver program. Hence wheneverX

Y

-ps is activated

it will warn the user:

X

Y

-pic Warning: The produced DVI �le

is not portable: It contains PostScript

\specials for hone particulari driver

A more complete discussion of the pros and cons of

using this backend is included below.

22.1 Choosing the DVI-driver

To activate the use of PostScript the user must spec-

ify one of the following command that selects the for-

mat of the \specials to be used:

\UsePSspecials {hdriveri}

\NoPSspecials cancels PostScript

\UsePSspecials restores PostScript

The \UsePSspecials initially causes a special driver

�le (see below) to be read. This �le contains de�ni-

tions which are speci�c to the particular hdriveri. Note

that some drivers may not be able to support all of the

PostScript e�ects that can be requested from within

X

Y

-pic. When an unsupported e�ect is encountered,

it is simply ignored. A message warning that the re-

quested e�ect is unavailable will be produced unless

too many such messages have already been issued.

Use of fonts is restored at any point by calling

\NoPSspecials, after which use of PostScript is re-

stored by using \UsePSspecials, without need of an

argument. This allows PostScript to be turned on

and o� for individual diagrams, or for portions of a sin-

gle diagram. Use of these commands obeys normal T

E

X

scoping rules, so if \NoPSspecials or \UsePSspecials

is speci�ed within an environment, the previous setting

will be restored upon leaving that environment.

For users of L

A

T

E

X2

"

, and presumably L

A

T

E

X3 (when

it becomes available), the driver type will be inherited

from any corresponding PostScript option speci�ed

with the \documentclass command, see [3, page 317].

The implicit \UsePSspecials will be executed at the

\begin{document} line; hence any \NoPSspecials

must occur after this to be e�ective.

The following table, which mimics the one in the

stated L

A

T

E

X2

"

reference, describes current support

for PostScript drivers: � denotes full support, for

all the features the driver can handle; ? denotes that

some features have not been tested, but may still work;

� denotes no support as yet. Please note the spelling,

which corresponds to the way the respective writers re-

fer to their own products within their own documenta-

tion. Alternative combinations of upper- and lowercase

letters are not guaranteed to work correctly.

hdriveri Description X

Y

-ps

dvips Tomas Rokicki's dvips �

Textures Blue Sky Research's Textures �

OzTeX Andrew Trevorrow's OzT

E

X �

ln Digital Corp. printers �

dvitops James Clark's dvitops ?

emtex Eberhard Matte's em-T

E

X �

Other DVI-drivers may already work if they use con-

ventions similar to dvips, OzT

E

X or Textures. The

T

E

Xnical documentation [11] in the �le xyps.doc con-

tains instructions concerning how to make X

Y

-ps work

with other drivers. To have another driver speci�cally

supported it is only necessary to inform the author of

its existence, how it handles \specials, and negotiate

with him a means for testing/verifying the implemen-

tation.

It should be possible to change hdriveri up until such

time as a \special is actually used. This is to allow

users to switch from a system default. This ability is

new with version 2.9; any di�culties with this feature

should be reported to the author

The following lists the hdriveris available, including

some experimental ones not mentioned above. The as-

sociated driver �le is given in parentheses, along with

any special considerations needed when using them.

dvips for dvips (xyps-dvi.tex): This included �le

(version 2.10) provides X

Y

-ps support for the dvips

driver by Tomas Rokicki [10] (it has been tested

with dvips version 5.55a).

Textures for Textures (xyps-txt.tex):

This included �le (version 2.10) provides X

Y

-ps

support for the DVI driver of Textures.

8

for

the Macintosh.

9

OzTeX for OzT

E

X (xyps-oz.tex): This included �le

(version 2.10) provides X

Y

-ps support for the DVI

driver of OzT

E

X by Andrew Trevorrow.

10

Bug: Colour support is not complete (see

INSTALL.OzTeX

Note: To use X

Y

-pic e�ectively with OzT

E

X re-

quires changing several parameters. This is de-

scribed in the �le INSTALL.OzTeX of the X

Y

-pic

distribution.

dvitops for dvitops (xyps-dto.tex): This in-

cluded �le (version 2.10) provides X

Y

-ps support

for the dvitops DVI driver by James Clark.

Bug: This code has not been tested!

8

Textures is a product of Blue Sky Research. X

Y

-ps has been

tested on versions 1.5b and later; no guarantee is given for earlier

versions.

9

Macintosh is a trademark of Apple Computer Inc.

10

OzT

E

X v1.7 is a shareware implementation of T

E

X for

Macintosh available from many bulletin boards and ftp sites;

v1.5 and earlier versions were freeware. Email contact:

hakt150@huxley.anu.edu.aui.

44

dviwindo for dviwindo (xyps-wdo.tex): This in-

cluded �le (version 2.10) provides X

Y

-ps support

for the dviwindo DVI driver.

Bug: This code has not been tested!

dvipub for dvipub (xyps-pub.tex): This included

�le (version 2.10) provides X

Y

-ps support for the

dvipub DVI driver.

Bug: This code has not been tested!

Information to improve the abilities of these

drivers should be conveyed to the author. Printed

technical documentation or software would be the

most useful form, though e-mail concerning good

experiences would also be helpful.
�̂

22.2 Why use PostScript.

At some sites users have di�culty installing the ex-

tra fonts used by X

Y

-pic. The .tfm �les can always be

installed locally but it may be necessary for the .pk

bitmap fonts (or the .mf METAFONT fonts) to be in-

stalled globally, by the system administrator, for print-

ing to work correctly. If PostScript is available then

X

Y

-ps allows this latter step to be bypassed.

Note: with X

Y

-ps it is still necessary to have the

.tfm font metric �les correctly installed, as these con-

tain information vital for correct typesetting.

Other advantages obtained from using X

Y

-ps are the

following:

� Circles and circle segments can be set for arbitrary

radii.

� Straight lines are straighter and cleaner.

� The range of possible angles of directionals is

greatly increased.

� Spline curves are smoother. True dotted and

dashed versions are now possible, using equally

spaced segments which are themselves curved.

� The PostScript �le produced by a driver from

anX

Y

-ps DVI �le is in general signi�cantly smaller

than one produced by processing an `ordinary'

DVI �le using the same driver. One reason for this

is that no font information for the X

Y

-pic fonts is

required in the PostScript �le; this furthermore

means that the use ofX

Y

-pic does not in itself limit

the PostScript �le to a particular resolution.

11

11

Most T

E

X PostScript drivers store the images of characters

used in the text as bitmaps at a particular resolution. This

means that the PostScript �le can only be printed without loss

of quality (due to bitmap scaling) at exactly this resolution.

� The latest version of X

Y

-pic now enables special

e�ects such as variable line thickness, gray-level

and colour. Also, rotation of text and (portions

of) diagrams is now supported with some drivers.

Similarlywhole diagrams can be scaled up or down

to �t a given area on the printed page. Future

versions will allow the use of regions �lled with

colour and/or patterns, as well as other attractive

e�ects.

Some of the above advantages are signi�cant, but

they come at a price. Known disadvantages of using

X

Y

-ps include the following:

� A DVI �le with specials for a particular Post-

Script driver can only be previewed if a pre-

viewer is available that supports exactly the same

\special format. A separate PostScript pre-

viewer will usually be required.

� The DVI �les created using X

Y

-ps lose their

\device-independence". So please do not dis-

tribute DVI �les with PostScript specials|send

either the T

E

X source code, expecting the recipient

to have X

Y

-pic
�̂ , or send a (compressed) Post-

Script �le.

PostScript header �le With some DVI-drivers

it is more e�cient to have the PostScript com-

mands that X

Y

-ps needs loaded initially from a sepa-

rate \header" �le. To use this facility the user has the

following commands available: : :

\UsePSheader {}

\UsePSheader {<filename>}

\dumpPSdict {<filename>}

\xyPSdefaultdict

The \UsePSheader command must be speci�ed be-

fore \UsePSspecials{hdriveri} is invoked. It allows

the name of the dictionary �le to be speci�ed as

the h�lenamei. Normally it is su�cient to invoke

\UsePSheader{}, which will use the default dictionary

name of xy212dict.ps, referring to the current version

of X

Y

-pic and X

Y

-ps.

See the documentation for the speci�c driver to es-

tablish where the dictionary �le should be located on

any particular T

E

X system. Usually it is su�cient to

have a copy in the current working directory. Invok-

ing the command \dumpPSdict{} will place a copy of

the requisite �le, having the default name, in the cur-

rent directory. This �le will be used as the dictionary

for the current processing, provided it is on the cor-

rect directory path, so that the driver can locate it

when needed. Consult your local system administrator

if you experience di�culties.

45

22.3 PostScript escape

An extra hshapei modi�er key allows arbitrary Post-

Script code to be applied to the current hobjecti.

[!hpostscript codei] for special e�ects

[psxy] stores current location.

Normally the hpostscript codei will be a simple com-

mand to alter the PostScript graphics state: e.g.

[!1 0 0 setrgbcolor] changes the colour used to

render parts of the hobjecti. Any number of such

hshapei modi�ers is allowable, however it is more e�-

cient to combine them into a single modi�er, whenever

possible.

It is very important that braces { and } do not ap-

pear explicitly in any hpostscript codei, as this may

upset the X

Y

-pic hobjecti parsing. However it is accept-

able to have a control sequence name here, expanding

into more intricate PostScript code. This will not

be expanded until a later (safe) time.

Due to di�erences within the DVI-drivers, such sim-

ple PostScript commands need not a�ect every part

of an hobjecti. In particular the lines, curves and ar-

rowheads generated by X

Y

-pic use a di�erent mech-

anism, which should give the same result with all

drivers. This involves rede�ning some PostScript

procedures which are always read prior to rendering

one of these objects. One simple way to specify a red

line is as follows; the xycolor extension provides more

sophisticated support for colour. The hshapei modi�ers

described in the previous section also use this mecha-

nism, so should work correctly with all drivers.

\def\colorxy(#1){%

/xycolor{#1 setrgbcolor}def}

...

\connect[!\colorxy(1 0 0)]\dir{-}

...

Note how the braces are inserted within the expansion

of the control sequence \colorxy, which happens after

parsing of the hconnectioni. The following table shows

which graphics parameters are treated in this way, their

default settings, and the type of PostScript code

needed to change them.

colour /xycolor{0 setgray}def

line width /xywidth{.4 setlinewidth}def

dashing /xydash{[] 0 setdash}def

line-cap /xycap{1 setlinecap}def

line-join /xyjoin{1 setlinejoin}def

This feature is meant primarily for modifying the ren-

dering of objects speci�ed in T

E

X and X

Y

-pic, not for

drawing new objects within PostScript. No guar-

antee can be given of the current location, or scale,

which may be di�erent with di�erent drivers. However

a good PostScript programmer will be able to over-

come such di�culties and do much more. To aid in

this the special modi�er [psxy] is provided to record

the location where the reference point of the current

hobjecti will be placed. Its coordinates are stored with

keys xyXpos and xyYpos.

22.4 Extensions

Several included �le handle standard extensions.

xyps-l.tex: This included �le (version 2.9) provides

X

Y

-ps support for the e�ects de�ned in the line

extension.

xyps-c.tex: This included �le (version 2.9) provides

X

Y

-ps support for the e�ects de�ned in the color

extension.

xyps-r.tex: This included �le (version 2.9) provides

X

Y

-ps support for the e�ects de�ned in the rotate

extension.

Answers to all exercises

Answer to exercise 1 (p.5): In the default setup

they are all denote the reference point of theX

Y

-picture

but the cartesian coordinate hposi (0,0) denotes the

point origo that may be changed to something else us-

ing the : operator.

Answer to exercise 2 (p.7): Use the hposiition

<X,Y >+"ob".

Answer to exercise 3 (p.7): It �rst sets c according

to \: : :". Then it changes c to the point right of c at

the same distance from the right edge of c as its width,

w, i.e.,

The : : :

| {z }

w

�

| {z }

w

Answer to exercise 4 (p.8): The hcoordi

\{"A";"B": "C";"D", x}" returns the cross point.

Here is how the author typeset the diagram in the ex-

ercise:

\xy

%

% set up and mark A, B, C, and D:

(0,0)="A" *\cir<1pt>{}*+!DR{A},

(7,10)="B" *\cir<1pt>{}*+!DR{B},

(13,8)="C" *\cir<1pt>{}*+!DL{C},

46

(15,4)="D" *\cir<1pt>{}*+!DL{D},

%

% goto intersection and name+circle it:

{"A";"B":"C";"D",x} ="I" *\cir<3pt>{},

%

% make dotted lines:

"I";"A"**{} +/1pc/;-/1pc/ **\dir{..},

"I";"D"**{} +/1pc/;-/1pc/ **\dir{..}

%

\endxy

Answer to exercise 5 (p.8): To copy the p value

to c, i.e., equivalent to \p".

Answer to exercise 6 (p.8): When using the kernel

connections that are all straight there is no di�erence,

e.g., **{}?< and **{}+E denote exactly the same posi-

tion. However, for other connections it is not necessar-

ily the case that the point where the connection enters

the current object, denoted by ?<, and the point where

the straight line from p enters the object, denoted by

+E, coincide.

Answer to exercise 7 (p.8): The code typesets the

picture

Box

�

Answer to exercise 8 (p.8): s0 contains D and s1

contains A.

Answer to exercise 9 (p.9): This does the job,

saving each point to make the previous point available

for the next piece:

\xy

@i @+(0,-10) @+(10,3) @+(20,-5),

s0="prev" @@{;"prev";**\dir{-}="prev"}

\endxy

Notice how we �rst save s0 because that will be the

last point that we run through thus the line is closed.

Answer to exercise 10 (p.9): The author used

\xy ={.{+DL(2)}.{+UR(2)}}"dbl",

+<3pc,2pc>{+}\frm{.}, "dbl"*\frm{--}

\endxy

to typeset the �gure in the exercise.

Answer to exercise 11 (p.10): The �rst typesets

\a" centered around 0 and then moves c to the lower

right corner, the second typesets \a" above the 0 point

and does not change c. With a \+" at 0 they look like

this: +
a
and

+

a

.

Answer to exercise 12 (p.10): They have the out-

lines

P

+

and

P

+

because the �rst is enlarged by the positive o�set to

the upper right corner and the second by the negative

o�set to the lower left corner.

Answer to exercise 13 (p.12): The �rst has no

e�ect since the direction is set to be that of a vector in

the current direction, however, the second reverses the

current direction.

Answer to exercise 14 (p.15): One way is

$$\xy

{+}; p+(6,3){+} **{} ?(1)

*\dir{-} *!/-5pt/^\dir{-}

*^\dir{-} *!/^-5pt/\dir{-}

\endxy$$

Thus we �rst create the two +s as p and c and con-

nect them with the dummy connection **{} to setup

the direction parameters. Then we move `on top of c'

with ?(1) and position the four sides of the square us-

ing ^ and _ for local direction changes and /hdimeni/

for skewing the resulting object by moving its reference

point in the opposite direction.

Answer to exercise 15 (p.15): One way is to add

extra half circles skewed such that they create the illu-

sion of a shade:

$$\xy

*\cir<5pt>{}

*!<-.2pt,.2pt>\cir<5pt>{dr^ul}

*!<-.4pt,.4pt>\cir<5pt>{dr^ul}

*!<-.6pt,.6pt>\cir<5pt>{dr^ul}

\endxy$$

Answer to exercise 16 (p.17): This is the code

that was actually used:

\xy (0,20)*[o]+{A};(60,0)*[o]+{B}="B"

**\crv{} \POS?(.4)*_+!UR{0},"B"

**\crv{(30,30)} \POS?*^+!D{1},"B"

**\crv{(20,40)&(40,40)} \POS?*^+!D{2},"B"

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

\POS?*+^!UR{4} \endxy

Answer to exercise 17 (p.17): This is the code

that was used to typeset the picture:

\xy (0,20)*+{A};(60,0)*+{B}

**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}

?<*\dir{<} ?>*\dir{>}

?(.65)*{\oplus} *!LD!/^-5pt/{x}

?(.65)/12pt/*{\oplus} *!LD!/^-5pt/{x'}

47

?(.28)*=0{\otimes}-/40pt/*+{Q}="q"

+/100pt/*+{P};"q" **\dir{-}

\endxy

Answer to exercise 18 (p.17): Here is the code

that was used to typeset the picture:

\def\ssz#1{\hbox{$_{^{#1}}$}}

\xy (0,0)*+{A};(30,-10)*+{B}="B",**\dir{-},

"B"**\crv{(5,20)&(20,25)&(35,20)}

?<(0)*\dir{<}="a" ?>(1)*\dir{>}="h"

?(.1)*\dir{<}="b" ?(.9)*\dir{>}="i"

?(.2)*\dir{<}="c" ?(.8)*\dir{>}="j"

?(.3)*\dir{<}="d" ?(.7)*\dir{>}="k"

?(.4)*\dir{<}="e" ?(.6)*\dir{>}="l"

?(.5)*\dir{|}="f",

"a"*!RC\txt{\ssz{(\lt)}};

"h"*!LC\txt{\ssz{\;(\gt)}},**\dir{.},

"b"*!RD{\ssz{.1}};

"i"*!L{\ssz{\;.9}},**\dir{-},

"c"*!RD{\ssz{.2}};

"j"*!L{\ssz{\;.8}},**\dir{-},

"d"*!RD{\ssz{.3}};

"k"*!L{\ssz{\;.7}},**\dir{-},

"e"*!RD{\ssz{.4}};

"l"*!LD{\ssz{.6}},**\dir{-},

"f"*!D!/^-3pt/{\ssz{.5}}

\endxy

Answer to exercise 19 (p.19): Here is how:

\xy

(0,0) *++={A} *\frm{o} ;

(10,7) *++={B} *\frm{o} **\frm{.}

\endxy

Answer to exercise 20 (p.19): The *\cir {} op-

eration changes c to be round whereas *\frm {o} does

not change c at all.

Answer to exercise 21 (p.19): Here is how:

\xy

(0,0) *+++{A} ;

(10,7) *+++{B} **\frm{.}

**\frm{^\}} ; **\frm{_\}}

\endxy

The trick in the last line is to ensure that the ref-

erence point of the merged object to be braced is the

right one in each case.

Answer to exercise 22 (p.23): This is how the

author speci�ed the diagram:

\UseCrayolaColors

$$\xy\drop[*1.25]\xybox{\POS

(0,0)*{A};(100,40)*{B}**{}

?<<*[@_][red][o]=<5pt>{\heartsuit};

?>>>*[@_][Plum][o]=<3pt>{\clubsuit}

**[|*][|.5pt][thicker]\dir{-},

?(.1)*[left]!RD\txt{label 1}*[red]\frm{.}

?(.2)*[!gsave newpath

xyXpos xyYpos moveto 50 dup rlineto

20 setlinewidth 0 0 1 setrgbcolor stroke

grestore][psxy]{.},

?(.2)*[@]\txt{label 2}*[red]\frm{.},

?(.2)*[BurntOrange]{*},

?(.3)*[halfsize]\txt{label 3}*[red]\frm{.}

?(.375)*[flip]\txt{label 4}*[red]\frm{.}

?(.5)*[dblsize]\txt{label 5}*[red]\frm{.}

?(.5)*[WildStrawberry]{*},

?(.7)*[hflip]\txt{label 6}*[red]\frm{.}

?(.8)*[vflip]\txt{label 7}*[red]\frm{.}

?(.9)*[right]!LD\txt{label 8}*[red]\frm{.}

?(.5)*[@][*.66667]!/^30pt/

\txt{special effect: aligned text}

*[red]\frm{.}

}\endxy$$

Answer to exercise 23 (p.27): Here is what the

author did:

\xy *+{A}*\cir<10pt>{}="me"

\PATH ~={**{}} ~-{**dir{-}}

`ul^ur,"me" "me" |>*:(1,-.15)\dir{>}

\endxy

The trick is getting the arrow head right: the :mod-

i�er to the explicit \dir hobjecti does that.

Answer to exercise 24 (p.27): The author did

\xy(0,0)

\ar @{-->} (30,7) ^A="a"

\POS(10,12)*+\txt{label} \ar "a"

\endxy

Answer to exercise 25 (p.28): Here is the entire

X

Y

-picture of the exercise:

\xy ;<1pc,0pc>:

\POS(0,0)*+{A}

\ar +(-2,3)*+{A'}*\cir{}

\ar @2 +(0,3)*+{A''}*\cir{}

\ar @3 +(2,3)*+{A'''}*\cir{}

\POS(6,0)*+{B}

\ar @1{||.>>} +(-2,3)*+{B'}*\cir{}

\ar @2{||.>>} +(0,3)*+{B''}*\cir{}

\ar @3{||.>>} +(2,3)*+{B'''}*\cir{}

\endxy

The �rst batch use the default {->} speci�cation.

Answer to exercise 26 (p.28): The author used

48

\newdir{ >}{{}*!/-5pt/\dir{>}}

Answer to exercise 27 (p.29): The author used

\xy

\ar @{>>*\composite{\dir{x}*\dir{+}}<<}

(20,7)

\endxy

Answer to exercise 28 (p.29): The author used

\xy*{\bullet}="b"

\ar

@'{@+(10,10) @+(0,20) @+(-10,10)}

"b"

\endxy

Answer to exercise 29 (p.31): Here is the code

used to typeset the pasting diagram in �gure 14.

\xymatrixrowsep{1.5pc}

\xymatrixcolsep{3pc}

\diagram

&&\relax\rtwocell<0>^{f_3^{}\;\;}{\omit}

&\relax\ddtwocell<0>{\omit}

\drtwocell<0>^{\;\;f_4^{}}{<3>}

\ddrrtwocell<\omit>{<8>}\\

&&&&\relax\drtwocell<0>^{\;\;f_5^{}}{\omit}\\

A \uurrlowertwocell<-6>{\omit}\relax

\uurrcompositemap<2>_{f_1^{}}^{f_2^{}}{<.5>}

\drtwocell<0>_{g_1^{}\;}{\omit}

&&&\relax\urtwocell<0>{\omit}

&&\relax\rtwocell<0>^{f_6^{}\;}{\omit}

&\relax\rlowertwocell<-3>_{g_4^{}}{<-1>}

\rcompositemap<6>_{f_7^{}}^{f_8^{}}{\omit}

& B \\

&\relax\urrtwocell<0>{\omit}

\xcompositemap[-1,4]{}%

<-4.5>_{g_2^{}}^{g_3^{}}{\omit}\\

\enddiagram

For the straight arrows, it would have been simpler to

use \..to provided xyarrow has been loaded. Instead

\..twocell<0>...{\omit } was used to illustrate the

versatility of nudging and \omit ; thus xy2cell can

completely handle a wide range of diagrams, without

requiring xyarrow. Note also the use of \relax at the

start of each new cell, to avoid premature expansion of

a complicated macro, which can upset the compiling

mechanism.

Answer to exercise 30 (p.34): Here is the code

used by the author to set the �rst diagram.

{\uppercurveobject{{?}}

\lowercurveobject{{\circ}}

\xymatrixcolsep{5pc}

\xymatrixrowsep{2pc}

\diagram

\relax\txt{ FUn }\rtwocell<8>{!\&}

& \relax\txt{ gaMES }

\enddiagram}

Here is the code used for the second diagram.

\xymatrixcolsep{2.5pc}

\xymatrixrowsep{4pc}

\diagram

\relax\txt<1.5cm>{\bf Ground State}

\rrtwocell<12>~^{+{}~**!/-2.5pt/\dir{>}}

~_{++{}~**!/5pt/\dir{<<}}

^{<1.5>\txt{\small continuous power}}

_{<1.5>\txt{\small pulsed emission}}{!}

& \relax\;\; N\!i\,C\!d\;\; \Circled

& \relax\txt<1.50cm>{\bf Excited State}

\enddiagram

Answer to exercise 31 (p.36): A modi�er was

used to make all entries round and all entries had an

extra circle added (these things are independent). Fi-

nally the matrix was rotated to make it possible to

enter it as a simple square:

\entrymodifiers={[o]=<1pc>}

\everyentry={\drop\cir{}}

\xy\xymatrix@ur{

A \save[];[r] **\dir{-},

[];[dr]**\dir{-},

[];[d] **\dir{-}\restore

& B \\

C & D }\endxy

Answer to exercise 32 (p.36): The author did

\xy\xymatrix{

*+!/r1em/{A\times B}

\ar[r]^{/A} \ar[d]_{/B}

& B \ar[d]^{\times A}

\\

A \ar[r]_{B\times}

& *+!/l1em/{B\times A}

}\endxy

Notice the use of a + modi�er to ensure that the

entries are grown just as in the default case.

Answer to exercise 33 (p.36): Here is how:

\objectheight{1pc} \objectwidth{3pc}

\xymatrixrowsep={0pc}

\everyentry={\framed}

\xy\xymatrix{%

: \save+<-4pc,1pc>*\hbox{\it root}

\ar[]

\restore

\\

49

{\bullet}

\save*{}

\ar`r[dd]+/r4pc/`[dd][dd]

\restore

\\

{\bullet}

\save*{}

\ar`r[d]+/r3pc/`[d]+/d2pc/

`[uu]+/l3pc/`[uu][uu]

\restore

\\

1 }\endxy

Answer to exercise 34 (p.37): The �rst A was

named to allow reference from the last:

\xygraph{

[]A="A1" :@/^.5pc/ [r]A

:@/^.5pc/ [r]A

:@/^1pc/ "A1" }

Answer to exercise 35 (p.39): Here is the code

actually used to typeset the \xypolygon s, within an

\xygraph . It illustrates three di�erent ways to place

the numbers. Other ways are also possible.

\def\objectstyle{\scriptscriptstyle}

\xy \xygraph{!{/r2pc/:}

[] !P3"A"{\bullet}

"A1"!{+U*++!D{1}} "A2"!{+LD*+!RU{2}}

"A3"!{+RD*+!LU{3}} "A0"

[rrr]*{0}*\cir<5pt>{}

!P6"B"{~<-\cir<5pt>{}}

"B1"1 "B2"2 "B3"3 "B4"4 "B5"5 "B6"6 "B0"

[rrr]0 !P9"C"{~*{\xypolynode}}}\endxy

References

[1] American Mathematical Society. A

M

S-L

A

T

E

X

Version 1.1 User's Guide, version 1.1 edition,

1991. Available for anonymous from CTAN in

macros/ams/amslatex/doc.

[2] Karl Berry. Expanded plain T

E

X, version 2.6 edi-

tion, May 1994. Available for anonymous from

CTAN in macros/eplain/doc.

[3] Michel Goossens, Frank Mittelbach, and Alexan-

der Samarin. The L

A

T

E

X Companion. Addison-

Wesley, 1994.

[4] Brian W. Kernighan. PIC|a language for type-

setting graphics. Software Practice and Experi-

ence, 12(1):1{21, 1982.

[5] Donald E. Knuth. The T

E

Xbook. Addison-Wesley,

1984.

[6] Donald E. Knuth. Computer Modern Typefaces,

volume A of Computers & Typesetting. Addison-

Wesley, 1986.

[7] Leslie Lamport. L

A

T

E

X|A Document Preparation

System. Addison-Wesley, 1986.

[8] Leslie Lamport. L

A

T

E

X|A Document Preparation

System. Addison-Wesley, 2nd edition, 1994.

[9] P. Naur et al. Report on the algorithmic language

ALGOL 60. Communications of the ACM, 3:299{

314, 1960.

[10] Tomas Rokicki. DVIPS: A T

E

X Driver. Dis-

tributed with the dvips program found on CTAN

archives.

[11] Kristo�er H. Rose. X

Y

-pic complete sources with

T

E

Xnical commentary. To appear.

[12] Kristo�er H. Rose. How to typeset pretty dia-

gram arrows with T

E

X|design decisions used in

X

Y

-pic. In Ji�r�� Zlatu�ska, editor, EuroT

E

X '92|

Proceedings of the 7th European T

E

X Conference,

pages 183{190, Prague, Czechoslovakia, Septem-

ber 1992. Czechoslovak T

E

X Users Group.

[13] Kristo�er H. Rose. Typesetting diagrams withX

Y

-

pic: User's manual. In Ji�r�� Zlatu�ska, editor, Eu-

roT

E

X '92|Proceedings of the 7th European T

E

X

Conference, pages 273{292, Prague, Czechoslo-

vakia, September 1992. Czechoslovak T

E

X Users

Group.

[14] Kristo�er H. Rose. X

Y

-pic user's guide. Math-

ematics Report 94{148, MPCE, Macquarie Uni-

versity, NSW 2109, Australia, June 1994. For

version 2.10+. Latest version available by anony-

mous ftp in ftp.diku.dk: /diku/users/kris/

TeX/xyguide.ps.Z.

[15] Michael D. Spivak. The Joy of T

E

X|A Gourmet

Guide to Typesetting with the A

M

S-T

E

X Macro

Package. American Mathematical Society, second

edition, 1990.

50

